Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Why is gmtime implemented this way?

Tags:

c

time

I happened across the source for Minix's gmtime function. I was interested in the bit that calculated the year number from days since epoch. Here are the guts of that bit:

http://www.raspberryginger.com/jbailey/minix/html/gmtime_8c-source.html

http://www.raspberryginger.com/jbailey/minix/html/loc__time_8h-source.html

#define EPOCH_YR 1970
#define LEAPYEAR(year) (!((year) % 4) && (((year) % 100) || !((year) % 400)))
#define YEARSIZE(year) (LEAPYEAR(year) ? 366 : 365)

int year = EPOCH_YR;

while (dayno >= YEARSIZE(year)) {
    dayno -= YEARSIZE(year);
    year++;
}

It looks like the algorithm is O(n), where n is the distance from the epoch. Additionally, it seems that LEAPYEAR must be calculated separately for each year – dozens of times for current dates and many more for dates far in the future. I had the following algorithm for doing the same thing (in this case from the ISO-9601 epoch (Year 0 = 1 BC) rather than UNIX epoch):

#define CYCLE_1   365
#define CYCLE_4   (CYCLE_1   *  4 + 1)
#define CYCLE_100 (CYCLE_4   * 25 - 1)
#define CYCLE_400 (CYCLE_100 *  4 + 1)

year += 400 * (dayno / CYCLE_400)
dayno = dayno % CYCLE_400

year += 100 * (dayno / CYCLE_100)
dayno = dayno % CYCLE_100

year +=   4 * (dayno / CYCLE_4)
dayno = dayno % CYCLE_4

year +=   1 * (dayno / CYCLE_1)
dayno = dayno % CYCLE_1

This runs in O(1) for any date, and looks like it should be faster even for dates reasonably close to 1970.

So, assuming that the Minix developers are Smart People who did it their way for a Reason, and probably know a bit more about C than I do, why?

like image 785
Thom Smith Avatar asked Jun 28 '10 21:06

Thom Smith


2 Answers

Ran your code as y2 minix code as y1 Solaris 9 v245 & got this profiler data:

 %Time Seconds Cumsecs  #Calls   msec/call  Name
  79.1    0.34    0.34   36966      0.0092  _write
   7.0    0.03    0.37 1125566      0.0000  .rem
   7.0    0.03    0.40   36966      0.0008  _doprnt
   4.7    0.02    0.42 1817938      0.0000  _mcount
   2.3    0.01    0.43   36966      0.0003  y2
   0.0    0.00    0.43       4      0.      atexit
   0.0    0.00    0.43       1      0.      _exithandle
   0.0    0.00    0.43       1      0.      main
   0.0    0.00    0.43       1      0.      _fpsetsticky
   0.0    0.00    0.43       1      0.      _profil
   0.0    0.00    0.43   36966      0.0000  printf
   0.0    0.00    0.43  147864      0.0000  .div
   0.0    0.00    0.43   73932      0.0000  _ferror_unlocked
   0.0    0.00    0.43   36966      0.0000  memchr
   0.0    0.00    0.43       1      0.      _findbuf
   0.0    0.00    0.43       1      0.      _ioctl
   0.0    0.00    0.43       1      0.      _isatty
   0.0    0.00    0.43   73932      0.0000  _realbufend
   0.0    0.00    0.43   36966      0.0000  _xflsbuf
   0.0    0.00    0.43       1      0.      _setbufend
   0.0    0.00    0.43       1      0.      _setorientation
   0.0    0.00    0.43  137864      0.0000  _memcpy
   0.0    0.00    0.43       3      0.      ___errno
   0.0    0.00    0.43       1      0.      _fstat64
   0.0    0.00    0.43       1      0.      exit
   0.0    0.00    0.43   36966      0.0000  y1

Maybe that is an answer

like image 138
jim mcnamara Avatar answered Oct 04 '22 04:10

jim mcnamara


This is pure speculation, but perhaps MINIX had requirements that were more important than execution speed, such as simplicity, ease of understanding, and conciseness? Some of the code was printed in a textbook, after all.

like image 30
bk1e Avatar answered Oct 04 '22 03:10

bk1e