I noticed that array.min
seems slow, so I did this test against my own naive implementation:
require 'benchmark'
array = (1..100000).to_a.shuffle
Benchmark.bmbm(5) do |x|
x.report("lib:") { 99.times { min = array.min } }
x.report("own:") { 99.times { min = array[0]; array.each { |n| min = n if n < min } } }
end
The results:
Rehearsal -----------------------------------------
lib: 1.531000 0.000000 1.531000 ( 1.538159)
own: 1.094000 0.016000 1.110000 ( 1.102130)
-------------------------------- total: 2.641000sec
user system total real
lib: 1.500000 0.000000 1.500000 ( 1.515249)
own: 1.125000 0.000000 1.125000 ( 1.145894)
I'm shocked. How can my own implementation running a block via each
beat the built-in? And beat it by so much?
Am I somehow mistaken? Or is this somehow normal? I'm confused.
My Ruby version, running on Windows 8.1 Pro:
C:\>ruby --version
ruby 2.2.3p173 (2015-08-18 revision 51636) [i386-mingw32]
For those who likes to upgrade to newer versions of software
require 'benchmark'
array = (1..100000).to_a.shuffle
Benchmark.bmbm(5) do |x|
x.report("lib:") { 99.times { min = array.min } }
x.report("own:") { 99.times { min = array[0]; array.each { |n| min = n if n < min } } }
end
Rehearsal -----------------------------------------
lib: 0.021326 0.000017 0.021343 ( 0.021343)
own: 0.498233 0.001024 0.499257 ( 0.499746)
-------------------------------- total: 0.520600sec
user system total real
lib: 0.018126 0.000000 0.018126 ( 0.018139)
own: 0.492046 0.000000 0.492046 ( 0.492367)
RUBY_VERSION # => "2.7.1"
If you are looking into solving this in really performant manner: O(log(n)) or O(n), look at https://en.wikipedia.org/wiki/Selection_algorithm#Incremental_sorting_by_selection and https://en.wikipedia.org/wiki/Heap_(data_structure)
Have a look at the implementation of Enumerable#min. It might use each
eventually to loop through the elements and get the min element, but before that it does some extra checking to see if it needs to return more than one element, or if it needs to compare the elements via a passed block. In your case the elements will get to be compared via min_i function, and I suspect that's where the speed difference comes from - that function will be slower than simply comparing two numbers.
There's no extra optimization for arrays, all enumerables are traversed the same way.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With