I have a Hadoop cluster with 5 nodes, each of which has 12 cores with 32GB memory. I use YARN as MapReduce framework, so I have the following settings with YARN:
Then the cluster metrics shown on my YARN cluster page (http://myhost:8088/cluster/apps) displayed that VCores Total is 40. This is pretty fine!
Then I installed Spark on top of it and use spark-shell in yarn-client mode.
I ran one Spark job with the following configuration:
I set --executor-cores as 10, --num-executors as 4, so logically, there should be totally 40 Vcores Used. However, when I check the same YARN cluster page after the Spark job started running, there are only 4 Vcores Used, and 4 Vcores Total
I also found that there is a parameter in capacity-scheduler.xml
- called yarn.scheduler.capacity.resource-calculator
:
"The ResourceCalculator implementation to be used to compare Resources in the scheduler. The default i.e. DefaultResourceCalculator only uses Memory while DominantResourceCalculator uses dominant-resource to compare multi-dimensional resources such as Memory, CPU etc."
I then changed that value to DominantResourceCalculator
.
But then when I restarted YARN and run the same Spark application, I still got the same result, say the cluster metrics still told that VCores used is 4! I also checked the CPU and memory usage on each node with htop command, I found that none of the nodes had all 10 CPU cores fully occupied. What can be the reason?
I tried also to run the same Spark job in fine-grained way, say with --num executors 40 --executor-cores 1
, in this ways I checked again the CPU status on each worker node, and all CPU cores are fully occupied.
According to the recommendations which we discussed above: Leave 1 core per node for Hadoop/Yarn daemons => Num cores available per node = 16-1 = 15. So, Total available of cores in cluster = 15 x 10 = 150. Number of available executors = (total cores/num-cores-per-executor) = 150/5 = 30.
A vcore, is a usage share of a host CPU which YARN Node Manager allocates to use all available resources in the most efficient possible way. YARN hosts can be tuned to optimize the use of vcores by configuring the available YARN containers as the number of vcores has to be set by an administrator in yarn-site.
A core is the computation unit of the CPU. In spark, cores control the total number of tasks an executor can run. It is the base foundation of the entire spark project. It assists in different types of functionalities like scheduling, task dispatching, operations of input and output and many more.
In cluster mode, the Spark driver runs inside an application master process which is managed by YARN on the cluster, and the client can go away after initiating the application. In client mode, the driver runs in the client process, and the application master is only used for requesting resources from YARN.
I was wondering the same but changing the resource-calculator worked for me.
This is how I set the property:
<property>
<name>yarn.scheduler.capacity.resource-calculator</name>
<value>org.apache.hadoop.yarn.util.resource.DominantResourceCalculator</value>
</property>
Check in the YARN UI in the application how many containers and vcores are assigned, with the change the number of containers should be executors+1 and the vcores should be: (executor-cores*num-executors) +1.
Without setting the YARN scheduler to FairScheduler, I saw the same thing. The Spark UI showed the right number of tasks, though, suggesting nothing was wrong. My cluster showed close to 100% CPU usage, which confirmed this.
After setting FairScheduler, the YARN Resources looked correct.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With