I hit a problem when running TensorFlow inference on multiple-GPU setups.
Environment: Python 3.6.4; TensorFlow 1.8.0; Centos 7.3; 2 Nvidia Tesla P4
Here is the nvidia-smi output when the system is free:
Tue Aug 28 10:47:42 2018
+-----------------------------------------------------------------------------+
| NVIDIA-SMI 384.81 Driver Version: 384.81 |
|-------------------------------+----------------------+----------------------+
| GPU Name Persistence-M| Bus-Id Disp.A | Volatile Uncorr. ECC |
| Fan Temp Perf Pwr:Usage/Cap| Memory-Usage | GPU-Util Compute M. |
|===============================+======================+======================|
| 0 Tesla P4 Off | 00000000:00:0C.0 Off | 0 |
| N/A 38C P0 22W / 75W | 0MiB / 7606MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
| 1 Tesla P4 Off | 00000000:00:0D.0 Off | 0 |
| N/A 39C P0 23W / 75W | 0MiB / 7606MiB | 0% Default |
+-------------------------------+----------------------+----------------------+
+-----------------------------------------------------------------------------+
| Processes: GPU Memory |
| GPU PID Type Process name Usage |
|=============================================================================|
| No running processes found |
+-----------------------------------------------------------------------------+
The key statements related to my issue:
os.environ["CUDA_VISIBLE_DEVICES"] = "0,1"
def get_sess_and_tensor(ckpt_path):
assert os.path.exists(ckpt_path), "file: {} not exist.".format(ckpt_path)
graph = tf.Graph()
with graph.as_default():
od_graph_def = tf.GraphDef()
with tf.gfile.GFile(ckpt_path, "rb") as fid1:
od_graph_def.ParseFromString(fid1.read())
tf.import_graph_def(od_graph_def, name="")
sess = tf.Session(graph=graph)
with tf.device('/gpu:1'):
tensor = graph.get_tensor_by_name("image_tensor:0")
boxes = graph.get_tensor_by_name("detection_boxes:0")
scores = graph.get_tensor_by_name("detection_scores:0")
classes = graph.get_tensor_by_name('detection_classes:0')
return sess, tensor, boxes, scores, classes
So, the problem is, when set I visible devices to '0,1', even if I set tf.device to GPU 1, when running inference, I see from nvidia-smi that only GPU 0 is used (GPU 0's GPU-Util is high – almost 100% – whereas GPU 1's is 0). Why doesn't it use GPU 1?
I want to use the two GPUs in parallel, but even with the following code, it still uses only GPU 0:
with tf.device('/gpu:0'):
tensor = graph.get_tensor_by_name("image_tensor:0")
boxes = graph.get_tensor_by_name("detection_boxes:0")
with tf.device('/gpu:1'):
scores = graph.get_tensor_by_name("detection_scores:0")
classes = graph.get_tensor_by_name('detection_classes:0')
Any suggestions are greatly appreciated.
Thanks.
Wesley
By default, TensorFlow maps nearly all of the GPU memory of all GPUs (subject to CUDA_VISIBLE_DEVICES ) visible to the process. This is done to more efficiently use the relatively precious GPU memory resources on the devices by reducing memory fragmentation. To limit TensorFlow to a specific set of GPUs, use the tf.
If a TensorFlow operation has both CPU and GPU implementations, TensorFlow will automatically place the operation to run on a GPU device first. If you have more than one GPU, the GPU with the lowest ID will be selected by default. However, TensorFlow does not place operations into multiple GPUs automatically.
If your system has an NVIDIA® GPU and you have the GPU version of TensorFlow installed then your Keras code will automatically run on the GPU.
The device names might be different depending on your setup.
Execute:
from tensorflow.python.client import device_lib
print(device_lib.list_local_devices())
And try using the device name
for your second GPU exactly as listed there.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With