In the following, setattr
succeeds in the first invocation, but fails in the second, with:
AttributeError: 'method' object has no attribute 'i'
Why is this, and is there a way of setting an attribute on a method such that it will only exist on one instance, not for each instance of the class?
class c:
def m(self):
print(type(c.m))
setattr(c.m, 'i', 0)
print(type(self.m))
setattr(self.m, 'i', 0)
Python 3.2.2
What is the use of the setattr() method in inheritance? The use case of setattr() in inheritance is the same, i.e., to assign value to the attributes of an object.
Python setattr() Python setattr() function is used to assign a new value to the attribute of an object/instance. Setattr in python sets a new specified value argument to the specified attribute name of a class/function's defined object.
Python setattr() method is used to assign the object attribute its value.
setattr() Return Value The setattr() method returns None .
The short answer: There is no way of adding custom attributes to bound methods.
The long answer follows.
In Python, there are function objects and method objects. When you define a class, the def
statement creates a function object that lives within the class' namespace:
>>> class c:
... def m(self):
... pass
...
>>> c.m
<function m at 0x025FAE88>
Function objects have a special __dict__
attribute that can hold user-defined attributes:
>>> c.m.i = 0
>>> c.m.__dict__
{'i': 0}
Method objects are different beasts. They are tiny objects just holding a reference to the corresponding function object (__func__
) and one to its host object (__self__
):
>>> c().m
<bound method c.m of <__main__.c object at 0x025206D0>>
>>> c().m.__self__
<__main__.c object at 0x02625070>
>>> c().m.__func__
<function m at 0x025FAE88>
>>> c().m.__func__ is c.m
True
Method objects provide a special __getattr__
that forwards attribute access to the function object:
>>> c().m.i
0
This is also true for the __dict__
property:
>>> c().m.__dict__['a'] = 42
>>> c.m.a
42
>>> c().m.__dict__ is c.m.__dict__
True
Setting attributes follows the default rules, though, and since they don't have their own __dict__
, there is no way to set arbitrary attributes.
This is similar to user-defined classes defining __slots__
and no __dict__
slot, when trying to set a non-existing slot raises an AttributeError
(see the docs on __slots__
for more information):
>>> class c:
... __slots__ = ('a', 'b')
...
>>> x = c()
>>> x.a = 1
>>> x.b = 2
>>> x.c = 3
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
AttributeError: 'c' object has no attribute 'c'
Q: "Is there a way of setting an attribute on a method such that it will only exist on one instance, not for each instance of the class?"
A: Yes:
class c:
def m(self):
print(type(c.m))
setattr(c.m, 'i', 0)
print(type(self))
setattr(self, 'i', 0)
The static variable on functions in the post you link to is not useful for methods. It sets an attribute on the function so that this attribute is available the next time the function is called, so you can make a counter or whatnot.
But methods have an object instance associated with them (self). Hence you have no need to set attributes on the method, as you simply can set it on the instance instead. That is in fact exactly what the instance is for.
The post you link to shows how to make a function with a static variable. I would say that in Python doing so would be misguided. Instead look at this answer: What is the Python equivalent of static variables inside a function?
That is the way to do it in Python in a way that is clear and easily understandable. You use a class and make it callable. Setting attributes on functions is possible and there are probably cases where it's a good idea, but in general it will just end up confusing people.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With