Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

Why does it.next() throw java.util.ConcurrentModificationException?

final Multimap<Term, BooleanClause> terms = getTerms(bq);
        for (Term t : terms.keySet()) {
            Collection<BooleanClause> C = new HashSet(terms.get(t));
            if (!C.isEmpty()) {
                for (Iterator<BooleanClause> it = C.iterator(); it.hasNext();) {
                    BooleanClause c = it.next();
                    if(c.isSomething()) C.remove(c);
                }
            }
        }

Not a SSCCE, but can you pick up the smell?

like image 847
simpatico Avatar asked Aug 30 '11 01:08

simpatico


People also ask

How do I fix Java Util ConcurrentModificationException?

How do you fix Java's ConcurrentModificationException? There are two basic approaches: Do not make any changes to a collection while an Iterator loops through it. If you can't stop the underlying collection from being modified during iteration, create a clone of the target data structure and iterate through the clone.

Who throws ConcurrentModificationException?

Class ConcurrentModificationException. This exception may be thrown by methods that have detected concurrent modification of an object when such modification is not permissible. For example, it is not generally permissible for one thread to modify a Collection while another thread is iterating over it.

Does HashMap throw ConcurrentModificationException?

Since Iterator of HashMap is fail-fast it will throw ConcurrentModificationException if you try to remove entry using Map.


1 Answers

The Iterator for the HashSet class is a fail-fast iterator. From the documentation of the HashSet class:

The iterators returned by this class's iterator method are fail-fast: if the set is modified at any time after the iterator is created, in any way except through the iterator's own remove method, the Iterator throws a ConcurrentModificationException. Thus, in the face of concurrent modification, the iterator fails quickly and cleanly, rather than risking arbitrary, non-deterministic behavior at an undetermined time in the future.

Note that the fail-fast behavior of an iterator cannot be guaranteed as it is, generally speaking, impossible to make any hard guarantees in the presence of unsynchronized concurrent modification. Fail-fast iterators throw ConcurrentModificationException on a best-effort basis. Therefore, it would be wrong to write a program that depended on this exception for its correctness: the fail-fast behavior of iterators should be used only to detect bugs.

Note the last sentence - the fact that you are catching a ConcurrentModificationException implies that another thread is modifying the collection. The same Javadoc API page also states:

If multiple threads access a hash set concurrently, and at least one of the threads modifies the set, it must be synchronized externally. This is typically accomplished by synchronizing on some object that naturally encapsulates the set. If no such object exists, the set should be "wrapped" using the Collections.synchronizedSet method. This is best done at creation time, to prevent accidental unsynchronized access to the set:

Set s = Collections.synchronizedSet(new HashSet(...));

I believe the references to the Javadoc are self explanatory in what ought to be done next.

Additionally, in your case, I do not see why you are not using the ImmutableSet, instead of creating a HashSet on the terms object (which could possibly be modified in the interim; I cannot see the implementation of the getTerms method, but I have a hunch that the underlying keyset is being modified). Creating a immutable set will allow the current thread to have it's own defensive copy of the original key-set.

Note, that although a ConcurrentModificationException can be prevented by using a synchronized Set (as noted in the Java API documentation), it is a prerequisite that all threads access the synchronized collection and not the backing collection directly (which might be untrue in your case as the HashSet is probably created in one thread, while the underlying collection for the MultiMap is modified by other threads). The synchronized collection classes actually maintain an internal mutex for threads to acquire access to; since you cannot access the mutex directly from other threads (and it would be quite ridiculous to do so here), you ought to look at using a defensive copy of either the keyset or of the MultiMap itself using the unmodifiableMultimap method of the MultiMaps class (you'll need to return an unmodifiable MultiMap from the getTerms method). You could also investigate the necessity of returning a synchronized MultiMap, but then again, you'll need to ensure that the mutex must be acquired by any thread to protect the underlying collection from concurrent modifications.

Note, I have deliberately omitted mentioning the use of a thread-safe HashSet for the sole reason that I'm unsure of whether concurrent access to the actual collection will be ensured; it most likely will not be the case.


Edit: ConcurrentModificationExceptions thrown on Iterator.next in a single-threaded scenario

This is with respect to the statement: if(c.isSomething()) C.remove(c); that was introduced in the edited question.

Invoking Collection.remove changes the nature of the question, for it now becomes possible to have ConcurrentModificationExceptions thrown even in a single-threaded scenario.

The possibility arises out of the use of the method itself, in conjunction with the use of the Collection's iterator, in this case the variable it that was initialized using the statement : Iterator<BooleanClause> it = C.iterator();.

The Iterator it that iterates over Collection C stores state pertinent to the current state of the Collection. In this particular case (assuming a Sun/Oracle JRE), a KeyIterator (an internal inner class of the HashMap class that is used by the HashSet) is used to iterate through the Collection. A particular characteristic of this Iterator is that it tracks the number of structural modifications performed on the Collection (the HashMap in this case) via it's Iterator.remove method.

When you invoke remove on the Collection directly, and then follow it up with an invocation of Iterator.next, the iterator throws a ConcurrentModificationException, as Iterator.next verifies whether any structural modifications of the Collection have occurred that the Iterator is unaware of. In this case, Collection.remove causes a structural modification, that is tracked by the Collection, but not by the Iterator.

To overcome this part of the problem, you must invoke Iterator.remove and not Collection.remove, for this ensures that the Iterator is now aware of the modification to the Collection. The Iterator in this case, will track the structural modification occurring through the remove method. Your code should therefore look like the following:

final Multimap<Term, BooleanClause> terms = getTerms(bq);
        for (Term t : terms.keySet()) {
            Collection<BooleanClause> C = new HashSet(terms.get(t));
            if (!C.isEmpty()) {
                for (Iterator<BooleanClause> it = C.iterator(); it.hasNext();) {
                    BooleanClause c = it.next();
                    if(c.isSomething()) it.remove(); // <-- invoke remove on the Iterator. Removes the element returned by it.next.
                }
            }
        }
like image 135
Vineet Reynolds Avatar answered Nov 15 '22 20:11

Vineet Reynolds