Why does the execution time changes when I use different data types in C?
Here is my first program in which I used long long int
& got 4.61s execution time on codechef for a no. of test cases.
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
long long int prm[] = {2,3,5,7,11,13,17,19,23,29,31,37,41,43,47,53,59,61,67,71,73,79,83,89,97,101,103,107,109,113,127,131,137,139,149,151,157,163,167,173,179,181,191,193,197,199,211,223,227,229,233,239,241,251,257,263,269,271,277,281,283,293,307,311,313,317,331,337,347,349,353,359,367,373,379,383,389,397,401,409,419,421,431,433,439,443,449,457,461,463,467,479,487,491,499,503,509,521,523,541,547,557,563,569,571,577,587,593,599,601,607,613,617,619,631,641,643,647,653,659,661,673,677,683,691,701,709,719,727,733,739,743,751,757,761,769,773,787,797,809,811,821,823,827,829,839,853,857,859,863,877,881,883,887,907,911,919,929,937,941,947,953,967,971,977,983,991,997,1009,1013,1019,1021,1031,1033,1039,1049,1051,1061,1063,1069,1087,1091,1093,1097,1103,1109,1117,1123,1129,1151,1153,1163,1171,1181,1187,1193,1201,1213,1217,1223,1229,1231,1237,1249,1259,1277,1279,1283,1289,1291,1297,1301,1303,1307,1319,1321,1327,1361,1367,1373,1381,1399,1409,1423,1427,1429,1433,1439,1447,1451,1453,1459,1471,1481,1483,1487,1489,1493,1499,1511,1523,1531,1543,1549,1553,1559,1567,1571,1579,1583,1597,1601,1607,1609,1613,1619,1621,1627,1637,1657,1663,1667,1669,1693,1697,1699,1709,1721,1723,1733,1741,1747,1753,1759,1777,1783,1787,1789,1801,1811,1823,1831,1847,1861,1867,1871,1873,1877,1879,1889,1901,1907,1913,1931,1933,1949,1951,1973,1979,1987,1993,1997,1999,2003,2011,2017,2027,2029,2039,2053,2063,2069,2081,2083,2087,2089,2099,2111,2113,2129,2131,2137,2141,2143,2153,2161,2179,2203,2207,2213,2221,2237,2239,2243,2251,2267,2269,2273,2281,2287,2293,2297,2309,2311,2333,2339,2341,2347,2351,2357,2371,2377,2381,2383,2389,2393,2399,2411,2417,2423,2437,2441,2447,2459,2467,2473,2477,2503,2521,2531,2539,2543,2549,2551,2557,2579,2591,2593,2609,2617,2621,2633,2647,2657,2659,2663,2671,2677,2683,2687,2689,2693,2699,2707,2711,2713,2719,2729,2731,2741,2749,2753,2767,2777,2789,2791,2797,2801,2803,2819,2833,2837,2843,2851,2857,2861,2879,2887,2897,2903,2909,2917,2927,2939,2953,2957,2963,2969,2971,2999,3001,3011,3019,3023,3037,3041,3049,3061,3067,3079,3083,3089,3109,3119,3121,3137,3163,3167,3169,3181,3187,3191,3203,3209,3217,3221,3229,3251,3253,3257,3259,3271,3299,3301,3307,3313,3319,3323,3329,3331,3343,3347,3359,3361,3371,3373,3389,3391,3407,3413,3433,3449,3457,3461,3463,3467,3469,3491,3499,3511,3517,3527,3529,3533,3539,3541,3547,3557,3559,3571,3581,3583,3593,3607,3613,3617,3623,3631,3637,3643,3659,3671,3673,3677,3691,3697,3701,3709,3719,3727,3733,3739,3761,3767,3769,3779,3793,3797,3803,3821,3823,3833,3847,3851,3853,3863,3877,3881,3889,3907,3911,3917,3919,3923,3929,3931,3943,3947,3967,3989,4001,4003,4007,4013,4019,4021,4027,4049,4051,4057,4073,4079,4091,4093,4099,4111,4127,4129,4133,4139,4153,4157,4159,4177,4201,4211,4217,4219,4229,4231,4241,4243,4253,4259,4261,4271,4273,4283,4289,4297,4327,4337,4339,4349,4357,4363,4373,4391,4397,4409,4421,4423,4441,4447,4451,4457,4463,4481,4483,4493,4507,4513,4517,4519,4523,4547,4549,4561,4567,4583,4591,4597,4603,4621,4637,4639,4643,4649,4651,4657,4663,4673,4679,4691,4703,4721,4723,4729,4733,4751,4759,4783,4787,4789,4793,4799,4801,4813,4817,4831,4861,4871,4877,4889,4903,4909,4919,4931,4933,4937,4943,4951,4957,4967,4969,4973,4987,4993,4999,5003,5009,5011,5021,5023,5039,5051,5059,5077,5081,5087,5099,5101,5107,5113,5119,5147,5153,5167,5171,5179,5189,5197,5209,5227,5231,5233,5237,5261,5273,5279,5281,5297,5303,5309,5323,5333,5347,5351,5381,5387,5393,5399,5407,5413,5417,5419,5431,5437,5441,5443,5449,5471,5477,5479,5483,5501,5503,5507,5519,5521,5527,5531,5557,5563,5569,5573,5581,5591,5623,5639,5641,5647,5651,5653,5657,5659,5669,5683,5689,5693,5701,5711,5717,5737,5741,5743,5749,5779,5783,5791,5801,5807,5813,5821,5827,5839,5843,5849,5851,5857,5861,5867,5869,5879,5881,5897,5903,5923,5927,5939,5953,5981,5987,6007,6011,6029,6037,6043,6047,6053,6067,6073,6079,6089,6091,6101,6113,6121,6131,6133,6143,6151,6163,6173,6197,6199,6203,6211,6217,6221,6229,6247,6257,6263,6269,6271,6277,6287,6299,6301,6311,6317,6323,6329,6337,6343,6353,6359,6361,6367,6373,6379,6389,6397,6421,6427,6449,6451,6469,6473,6481,6491,6521,6529,6547,6551,6553,6563,6569,6571,6577,6581,6599,6607,6619,6637,6653,6659,6661,6673,6679,6689,6691,6701,6703,6709,6719,6733,6737,6761,6763,6779,6781,6791,6793,6803,6823,6827,6829,6833,6841,6857,6863,6869,6871,6883,6899,6907,6911,6917,6947,6949,6959,6961,6967,6971,6977,6983,6991,6997,7001,7013,7019,7027,7039,7043,7057,7069,7079,7103,7109,7121,7127,7129,7151,7159,7177,7187,7193,7207,7211,7213,7219,7229,7237,7243,7247,7253,7283,7297,7307,7309,7321,7331,7333,7349,7351,7369,7393,7411,7417,7433,7451,7457,7459,7477,7481,7487,7489,7499,7507,7517,7523,7529,7537,7541,7547,7549,7559,7561,7573,7577,7583,7589,7591,7603,7607,7621,7639,7643,7649,7669,7673,7681,7687,7691,7699,7703,7717,7723,7727,7741,7753,7757,7759,7789,7793,7817,7823,7829,7841,7853,7867,7873,7877,7879,7883,7901,7907,7919,7927,7933,7937,7949,7951,7963,7993,8009,8011,8017,8039,8053,8059,8069,8081,8087,8089,8093,8101,8111,8117,8123,8147,8161,8167,8171,8179,8191,8209,8219,8221,8231,8233,8237,8243,8263,8269,8273,8287,8291,8293,8297,8311,8317,8329,8353,8363,8369,8377,8387,8389,8419,8423,8429,8431,8443,8447,8461,8467,8501,8513,8521,8527,8537,8539,8543,8563,8573,8581,8597,8599,8609,8623,8627,8629,8641,8647,8663,8669,8677,8681,8689,8693,8699,8707,8713,8719,8731,8737,8741,8747,8753,8761,8779,8783,8803,8807,8819,8821,8831,8837,8839,8849,8861,8863,8867,8887,8893,8923,8929,8933,8941,8951,8963,8969,8971,8999,9001,9007,9011,9013,9029,9041,9043,9049,9059,9067,9091,9103,9109,9127,9133,9137,9151,9157,9161,9173,9181,9187,9199,9203,9209,9221,9227,9239,9241,9257,9277,9281,9283,9293,9311,9319,9323,9337,9341,9343,9349,9371,9377,9391,9397,9403,9413,9419,9421,9431,9433,9437,9439,9461,9463,9467,9473,9479,9491,9497,9511,9521,9533,9539,9547,9551,9587,9601,9613,9619,9623,9629,9631,9643,9649,9661,9677,9679,9689,9697,9719,9721,9733,9739,9743,9749,9767,9769,9781,9787,9791,9803,9811,9817,9829,9833,9839,9851,9857,9859,9871,9883,9887,9901,9907,9923,9929,9931,9941,9949,9967,9973,10007,10009,10037,10039,10061,10067,10069,10079,10091,10093,10099,10103,10111,10133,10139,10141,10151,10159,10163,10169,10177,10181,10193,10211,10223,10243,10247,10253,10259,10267,10271,10273,10289,10301,10303,10313,10321,10331,10333,10337,10343,10357,10369,10391,10399,10427,10429,10433,10453,10457,10459,10463,10477,10487,10499,10501,10513,10529,10531,10559,10567,10589,10597,10601,10607,10613,10627,10631,10639,10651,10657,10663,10667,10687,10691,10709,10711,10723,10729,10733,10739,10753,10771,10781,10789,10799,10831,10837,10847,10853,10859,10861,10867,10883,10889,10891,10903,10909,10937,10939,10949,10957,10973,10979,10987,10993,11003,11027,11047,11057,11059,11069,11071,11083,11087,11093,11113,11117,11119,11131,11149,11159,11161,11171,11173,11177,11197,11213,11239,11243,11251,11257,11261,11273,11279,11287,11299,11311,11317,11321,11329,11351,11353,11369,11383,11393,11399,11411,11423,11437,11443,11447,11467,11471,11483,11489,11491,11497,11503,11519,11527,11549,11551,11579,11587,11593,11597,11617,11621,11633,11657,11677,11681,11689,11699,11701,11717,11719,11731,11743,11777,11779,11783,11789,11801,11807,11813,11821,11827,11831,11833,11839,11863,11867,11887,11897,11903,11909,11923,11927,11933,11939,11941,11953,11959,11969,11971,11981,11987,12007,12011,12037,12041,12043,12049,12071,12073,12097,12101,12107,12109,12113,12119,12143,12149,12157,12161,12163,12197,12203,12211,12227,12239,12241,12251,12253,12263,12269,12277,12281,12289,12301,12323,12329,12343,12347,12373,12377,12379,12391,12401,12409,12413,12421,12433,12437,12451,12457,12473,12479,12487,12491,12497,12503,12511,12517,12527,12539,12541,12547,12553,12569,12577,12583,12589,12601,12611,12613,12619,12637,12641,12647,12653,12659,12671,12689,12697,12703,12713,12721,12739,12743,12757,12763,12781,12791,12799,12809,12821,12823,12829,12841,12853,12889,12893,12899,12907,12911,12917,12919,12923,12941,12953,12959,12967,12973,12979,12983,13001,13003,13007,13009,13033,13037,13043,13049,13063,13093,13099,13103,13109,13121,13127,13147,13151,13159,13163,13171,13177,13183,13187,13217,13219,13229,13241,13249,13259,13267,13291,13297,13309,13313,13327,13331,13337,13339,13367,13381,13397,13399,13411,13417,13421,13441,13451,13457,13463,13469,13477,13487,13499,13513,13523,13537,13553,13567,13577,13591,13597,13613,13619,13627,13633,13649,13669,13679,13681,13687,13691,13693,13697,13709,13711,13721,13723,13729,13751,13757,13759,13763,13781,13789,13799,13807,13829,13831,13841,13859,13873,13877,13879,13883,13901,13903,13907,13913,13921,13931,13933,13963,13967,13997,13999,14009,14011,14029,14033,14051,14057,14071,14081,14083,14087,14107,14143,14149,14153,14159,14173,14177,14197,14207,14221,14243,14249,14251,14281,14293,14303,14321,14323,14327,14341,14347,14369,14387,14389,14401,14407,14411,14419,14423,14431,14437,14447,14449,14461,14479,14489,14503,14519,14533,14537,14543,14549,14551,14557,14561,14563,14591,14593,14621,14627,14629,14633,14639,14653,14657,14669,14683,14699,14713,14717,14723,14731,14737,14741,14747,14753,14759,14767,14771,14779,14783,14797,14813,14821,14827,14831,14843,14851,14867,14869,14879,14887,14891,14897,14923,14929,14939,14947,14951,14957,14969,14983,15013,15017,15031,15053,15061,15073,15077,15083,15091,15101,15107,15121,15131,15137,15139,15149,15161,15173,15187,15193,15199,15217,15227,15233,15241,15259,15263,15269,15271,15277,15287,15289,15299,15307,15313,15319,15329,15331,15349,15359,15361,15373,15377,15383,15391,15401,15413,15427,15439,15443,15451,15461,15467,15473,15493,15497,15511,15527,15541,15551,15559,15569,15581,15583,15601,15607,15619,15629,15641,15643,15647,15649,15661,15667,15671,15679,15683,15727,15731,15733,15737,15739,15749,15761,15767,15773,15787,15791,15797,15803,15809,15817,15823,15859,15877,15881,15887,15889,15901,15907,15913,15919,15923,15937,15959,15971,15973,15991,16001,16007,16033,16057,16061,16063,16067,16069,16073,16087,16091,16097,16103,16111,16127,16139,16141,16183,16187,16189,16193,16217,16223,16229,16231,16249,16253,16267,16273,16301,16319,16333,16339,16349,16361,16363,16369,16381,16411,16417,16421,16427,16433,16447,16451,16453,16477,16481,16487,16493,16519,16529,16547,16553,16561,16567,16573,16603,16607,16619,16631,16633,16649,16651,16657,16661,16673,16691,16693,16699,16703,16729,16741,16747,16759,16763,16787,16811,16823,16829,16831,16843,16871,16879,16883,16889,16901,16903,16921,16927,16931,16937,16943,16963,16979,16981,16987,16993,17011,17021,17027,17029,17033,17041,17047,17053,17077,17093,17099,17107,17117,17123,17137,17159,17167,17183,17189,17191,17203,17207,17209,17231,17239,17257,17291,17293,17299,17317,17321,17327,17333,17341,17351,17359,17377,17383,17387,17389,17393,17401,17417,17419,17431,17443,17449,17467,17471,17477,17483,17489,17491,17497,17509,17519,17539,17551,17569,17573,17579,17581,17597,17599,17609,17623,17627,17657,17659,17669,17681,17683,17707,17713,17729,17737,17747,17749,17761,17783,17789,17791,17807,17827,17837,17839,17851,17863,17881,17891,17903,17909,17911,17921,17923,17929,17939,17957,17959,17971,17977,17981,17987,17989,18013,18041,18043,18047,18049,18059,18061,18077,18089,18097,18119,18121,18127,18131,18133,18143,18149,18169,18181,18191,18199,18211,18217,18223,18229,18233,18251,18253,18257,18269,18287,18289,18301,18307,18311,18313,18329,18341,18353,18367,18371,18379,18397,18401,18413,18427,18433,18439,18443,18451,18457,18461,18481,18493,18503,18517,18521,18523,18539,18541,18553,18583,18587,18593,18617,18637,18661,18671,18679,18691,18701,18713,18719,18731,18743,18749,18757,18773,18787,18793,18797,18803,18839,18859,18869,18899,18911,18913,18917,18919,18947,18959,18973,18979,19001,19009,19013,19031,19037,19051,19069,19073,19079,19081,19087,19121,19139,19141,19157,19163,19181,19183,19207,19211,19213,19219,19231,19237,19249,19259,19267,19273,19289,19301,19309,19319,19333,19373,19379,19381,19387,19391,19403,19417,19421,19423,19427,19429,19433,19441,19447,19457,19463,19469,19471,19477,19483,19489,19501,19507,19531,19541,19543,19553,19559,19571,19577,19583,19597,19603,19609,19661,19681,19687,19697,19699,19709,19717,19727,19739,19751,19753,19759,19763,19777,19793,19801,19813,19819,19841,19843,19853,19861,19867,19889,19891,19913,19919,19927,19937,19949,19961,19963,19973,19979,19991,19993,19997,20011,20021,20023,20029,20047,20051,20063,20071,20089,20101,20107,20113,20117,20123,20129,20143,20147,20149,20161,20173,20177,20183,20201,20219,20231,20233,20249,20261,20269,20287,20297,20323,20327,20333,20341,20347,20353,20357,20359,20369,20389,20393,20399,20407,20411,20431,20441,20443,20477,20479,20483,20507,20509,20521,20533,20543,20549,20551,20563,20593,20599,20611,20627,20639,20641,20663,20681,20693,20707,20717,20719,20731,20743,20747,20749,20753,20759,20771,20773,20789,20807,20809,20849,20857,20873,20879,20887,20897,20899,20903,20921,20929,20939,20947,20959,20963,20981,20983,21001,21011,21013,21017,21019,21023,21031,21059,21061,21067,21089,21101,21107,21121,21139,21143,21149,21157,21163,21169,21179,21187,21191,21193,21211,21221,21227,21247,21269,21277,21283,21313,21317,21319,21323,21341,21347,21377,21379,21383,21391,21397,21401,21407,21419,21433,21467,21481,21487,21491,21493,21499,21503,21517,21521,21523,21529,21557,21559,21563,21569,21577,21587,21589,21599,21601,21611,21613,21617,21647,21649,21661,21673,21683,21701,21713,21727,21737,21739,21751,21757,21767,21773,21787,21799,21803,21817,21821,21839,21841,21851,21859,21863,21871,21881,21893,21911,21929,21937,21943,21961,21977,21991,21997,22003,22013,22027,22031,22037,22039,22051,22063,22067,22073,22079,22091,22093,22109,22111,22123,22129,22133,22147,22153,22157,22159,22171,22189,22193,22229,22247,22259,22271,22273,22277,22279,22283,22291,22303,22307,22343,22349,22367,22369,22381,22391,22397,22409,22433,22441,22447,22453,22469,22481,22483,22501,22511,22531,22541,22543,22549,22567,22571,22573,22613,22619,22621,22637,22639,22643,22651,22669,22679,22691,22697,22699,22709,22717,22721,22727,22739,22741,22751,22769,22777,22783,22787,22807,22811,22817,22853,22859,22861,22871,22877,22901,22907,22921,22937,22943,22961,22963,22973,22993,23003,23011,23017,23021,23027,23029,23039,23041,23053,23057,23059,23063,23071,23081,23087,23099,23117,23131,23143,23159,23167,23173,23189,23197,23201,23203,23209,23227,23251,23269,23279,23291,23293,23297,23311,23321,23327,23333,23339,23357,23369,23371,23399,23417,23431,23447,23459,23473,23497,23509,23531,23537,23539,23549,23557,23561,23563,23567,23581,23593,23599,23603,23609,23623,23627,23629,23633,23663,23669,23671,23677,23687,23689,23719,23741,23743,23747,23753,23761,23767,23773,23789,23801,23813,23819,23827,23831,23833,23857,23869,23873,23879,23887,23893,23899,23909,23911,23917,23929,23957,23971,23977,23981,23993,24001,24007,24019,24023,24029,24043,24049,24061,24071,24077,24083,24091,24097,24103,24107,24109,24113,24121,24133,24137,24151,24169,24179,24181,24197,24203,24223,24229,24239,24247,24251,24281,24317,24329,24337,24359,24371,24373,24379,24391,24407,24413,24419,24421,24439,24443,24469,24473,24481,24499,24509,24517,24527,24533,24547,24551,24571,24593,24611,24623,24631,24659,24671,24677,24683,24691,24697,24709,24733,24749,24763,24767,24781,24793,24799,24809,24821,24841,24847,24851,24859,24877,24889,24907,24917,24919,24923,24943,24953,24967,24971,24977,24979,24989,25013,25031,25033,25037,25057,25073,25087,25097,25111,25117,25121,25127,25147,25153,25163,25169,25171,25183,25189,25219,25229,25237,25243,25247,25253,25261,25301,25303,25307,25309,25321,25339,25343,25349,25357,25367,25373,25391,25409,25411,25423,25439,25447,25453,25457,25463,25469,25471,25523,25537,25541,25561,25577,25579,25583,25589,25601,25603,25609,25621,25633,25639,25643,25657,25667,25673,25679,25693,25703,25717,25733,25741,25747,25759,25763,25771,25793,25799,25801,25819,25841,25847,25849,25867,25873,25889,25903,25913,25919,25931,25933,25939,25943,25951,25969,25981,25997,25999,26003,26017,26021,26029,26041,26053,26083,26099,26107,26111,26113,26119,26141,26153,26161,26171,26177,26183,26189,26203,26209,26227,26237,26249,26251,26261,26263,26267,26293,26297,26309,26317,26321,26339,26347,26357,26371,26387,26393,26399,26407,26417,26423,26431,26437,26449,26459,26479,26489,26497,26501,26513,26539,26557,26561,26573,26591,26597,26627,26633,26641,26647,26669,26681,26683,26687,26693,26699,26701,26711,26713,26717,26723,26729,26731,26737,26759,26777,26783,26801,26813,26821,26833,26839,26849,26861,26863,26879,26881,26891,26893,26903,26921,26927,26947,26951,26953,26959,26981,26987,26993,27011,27017,27031,27043,27059,27061,27067,27073,27077,27091,27103,27107,27109,27127,27143,27179,27191,27197,27211,27239,27241,27253,27259,27271,27277,27281,27283,27299,27329,27337,27361,27367,27397,27407,27409,27427,27431,27437,27449,27457,27479,27481,27487,27509,27527,27529,27539,27541,27551,27581,27583,27611,27617,27631,27647,27653,27673,27689,27691,27697,27701,27733,27737,27739,27743,27749,27751,27763,27767,27773,27779,27791,27793,27799,27803,27809,27817,27823,27827,27847,27851,27883,27893,27901,27917,27919,27941,27943,27947,27953,27961,27967,27983,27997,28001,28019,28027,28031,28051,28057,28069,28081,28087,28097,28099,28109,28111,28123,28151,28163,28181,28183,28201,28211,28219,28229,28277,28279,28283,28289,28297,28307,28309,28319,28349,28351,28387,28393,28403,28409,28411,28429,28433,28439,28447,28463,28477,28493,28499,28513,28517,28537,28541,28547,28549,28559,28571,28573,28579,28591,28597,28603,28607,28619,28621,28627,28631,28643,28649,28657,28661,28663,28669,28687,28697,28703,28711,28723,28729,28751,28753,28759,28771,28789,28793,28807,28813,28817,28837,28843,28859,28867,28871,28879,28901,28909,28921,28927,28933,28949,28961,28979,29009,29017,29021,29023,29027,29033,29059,29063,29077,29101,29123,29129,29131,29137,29147,29153,29167,29173,29179,29191,29201,29207,29209,29221,29231,29243,29251,29269,29287,29297,29303,29311,29327,29333,29339,29347,29363,29383,29387,29389,29399,29401,29411,29423,29429,29437,29443,29453,29473,29483,29501,29527,29531,29537,29567,29569,29573,29581,29587,29599,29611,29629,29633,29641,29663,29669,29671,29683,29717,29723,29741,29753,29759,29761,29789,29803,29819,29833,29837,29851,29863,29867,29873,29879,29881,29917,29921,29927,29947,29959,29983,29989,30011,30013,30029,30047,30059,30071,30089,30091,30097,30103,30109,30113,30119,30133,30137,30139,30161,30169,30181,30187,30197,30203,30211,30223,30241,30253,30259,30269,30271,30293,30307,30313,30319,30323,30341,30347,30367,30389,30391,30403,30427,30431,30449,30467,30469,30491,30493,30497,30509,30517,30529,30539,30553,30557,30559,30577,30593,30631,30637,30643,30649,30661,30671,30677,30689,30697,30703,30707,30713,30727,30757,30763,30773,30781,30803,30809,30817,30829,30839,30841,30851,30853,30859,30869,30871,30881,30893,30911,30931,30937,30941,30949,30971,30977,30983,31013,31019,31033,31039,31051,31063,31069,31079,31081,31091,31121,31123,31139,31147,31151,31153,31159,31177,31181,31183,31189,31193,31219,31223,31231,31237,31247,31249,31253,31259,31267,31271,31277,31307,31319,31321,31327,31333,31337,31357,31379,31387,31391,31393,31397,31469,31477,31481,31489,31511,31513,31517,31531,31541,31543,31547,31567,31573,31583,31601,31607,31627,31643,31649,31657,31663,31667,31687,31699,31721,31723,31727,31729,31741,31751,31769,31771,31793,31799,31817,31847,31849,31859,31873,31883,31891,31907,31957,31963,31973,31981,31991,32003,32009,32027,32029,32051,32057,32059,32063,32069,32077,32083,32089,32099,32117};
int main()
{
int test, flag, sq;
long long int first, second, first_l, secd_l;
scanf("%d",&test);
while(test--)
{
scanf("%lld",&first);
scanf("%lld",&second);
if(first == 1)
first++;
if(first == 2 && second != 1)
printf("%d\n",2);
first += (first % 2 == 0) ? 1 : 0 ;
for(first_l = first; first_l <= second; first_l += 2)
{
flag = 0;
sq = sqrt(first_l);
for(secd_l = 0; sq >= prm[secd_l]; secd_l++)
{
if(first_l % prm[secd_l] == 0)
{
flag = 1;
break;
}
}
if(flag == 0)
{
printf("%lld\n",first_l);
}
}
}
return 0;
}
Here is another program which is very similar to the first one but using unsigned int
instead of long long int
. The execution time I got for this is 2.78s on codechef for same test cases.
#include<stdio.h>
#include<stdlib.h>
#include<math.h>
int prm[] ={same as before(max character limit in question)};
int main()
{
int test, flag, sq;
unsigned int first, second, first_l, secd_l;
scanf("%d",&test);
while(test--)
{
scanf("%u",&first);
scanf("%u",&second);
if(first == 1)
first++;
if(first == 2 && second != 1)
printf("%d\n",2);
first += (first % 2 == 0) ? 1 : 0 ;
for(first_l = first; first_l <= second; first_l += 2)
{
flag = 0;
sq = sqrt(first_l);
for(secd_l = 0; sq >= prm[secd_l]; secd_l++)
{
if(first_l % prm[secd_l] == 0)
{
flag = 1;
break;
}
}
if(flag == 0)
{
printf("%u\n",first_l);
}
}
}
return 0;
}
In another program code I simply used int
instead of long long int
/unsigned int
on the same test cases & I got 2.57 sec execution time.
So, I would like to know why does having long long int
or unsigned int
make such a huge difference for my execution time. All the solutions are tested on equal PIII 733 MHZ processors on codechef.
The input format is
The first line contains t, the number of test cases (less then or equal to 10). Followed by t lines which contain two numbers m and n (1 <= m <= n <= 1000000000, n-m<=100000) separated by a space.
The program is to generate prime numbers between two numbers n & m.
Many scheduling algorithms assume that the execution time of a program is constant, which is not realistic given the data-dependent behavior of most interesting programs. WCET is often used as a substitute for exact execution time.
The execution time or CPU time, which we call Ci, is the total amount of time that the process executes; that time is generally independent of the initiation time but often depends on the input data. We often define deadlines for periodic processes, but we may also want to define a deadline for an aperiodic process.
Compile time address binding is done before loading the program into memory. Execution time address binding is done at the time of program execution. Instructions are translated into absolute address.
Program execution time is the number of dynamic instructions multiplied by the cycle time plus the latency of the last instruction.
there are many factors that determine the execution time.
these are just a few ideas; code optimisation is a vast topic :)
As Chris Maes points out, on 32bit machines 32bits operations take less time than 64bits. The reason is you need two 32bit registers (usually EDX
and EAX
on x86, ALU computes with integers) to work with them or just to display them - this requires more isntructions and more CPU cycles, so it is slower to work with long long (which is probably 64bit) than with int (probably 32bit). Probably, because it is platform dependent, as Gopi points out.
On 64bit machines, there are 64bit registers (like RAX
) disposable to ALU unit, so in theory it could be faster there. However even on 64bit machine you can perform 32bit computing logic.
On a 32-bit computer obviously doing 64-bit math should be slower than 32-bit ones. Think about how slower you multiply two 2-digit numbers in your head than multiplying two 1-digit numbers. [Note that most PCs about 2 decades back run 32 and 64-bit OSes, so int is a 32-bit type whose range is [-2147483648, 2147483647]. Codechef of course doesn't use DOS anymore so int should be 32 bits, too.
You need more memory and more registers to store a 64-bit variable. On an architecture that is low on register number like x86, less registers left may incur more memory accesses to spill the values for the other variables. As memory bandwidth is limited, less variables can be read/write at once and less variables fit in cache, too, so that'll be twice slower and if you need to access a lot of memory, much slower when a cache miss appears
You also need more instructions to process values larger than the register size. To add/subtract 2 64-bit values on x86 you need 2 instructions
add edx, ebx // add low part
adc eax, ecx // add high part with carry
Each instruction above adds 2 32-bit registers, so you can see that you only need 1 instruction to add two 32-bit int
s
For more complex operations like multiplication and division the difference in performance would be much larger. You can see that gcc generates a lot of instructions to multiply a 32-bit number by a 64-bit one here. Your program has a modulo operation so the compiler might need to emit a division, which is the most complex in 4 basic operations. Therefore the performance is even worse.
You can read more about this here
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With