This is a bit puzzling here. The following code is part of a little testing application to verify that code changes didn't introduce a regression. To make it fast we used memcmp
which appears to be the fastest way of comparing two images of equal size (unsurprisingly).
However, we have a few test images that exhibit a rather surprising problem: memcmp
on the bitmap data tells us that they are not equal, however, a pixel-by-pixel comparison doesn't find any difference at all. I was under the impression that when using LockBits
on a Bitmap
you get the actual raw bytes of the image. For a 24 bpp bitmap it's a bit hard to imagine a condition where the pixels are the same but the underlying pixel data isn't.
A few surprising things:
00
in one image and FF
in the other.PixelFormat
for LockBits
to Format32bppRgb
or Format32bppArgb
, the comparison succeeds.BitmapData
returned by the first LockBits
call as 4th argument to the second one, the comparison succeeds.I'm a bit stumped here because frankly I cannot imagine why this happens.
(Reduced) Code below. Just compile with csc /unsafe
and pass a 24bpp PNG image as first argument.
using System;
using System.Drawing;
using System.Drawing.Imaging;
using System.Runtime.InteropServices;
class Program
{
public static void Main(string[] args)
{
Bitmap title = new Bitmap(args[0]);
Console.WriteLine(CompareImageResult(title, new Bitmap(title)));
}
private static string CompareImageResult(Bitmap bmp, Bitmap expected)
{
string retval = "";
unsafe
{
var rect = new Rectangle(0, 0, bmp.Width, bmp.Height);
var resultData = bmp.LockBits(rect, ImageLockMode.ReadOnly, bmp.PixelFormat);
var expectedData = expected.LockBits(rect, ImageLockMode.ReadOnly, expected.PixelFormat);
try
{
if (memcmp(resultData.Scan0, expectedData.Scan0, resultData.Stride * resultData.Height) != 0)
retval += "Bitmap data did not match\n";
}
finally
{
bmp.UnlockBits(resultData);
expected.UnlockBits(expectedData);
}
}
for (var x = 0; x < bmp.Width; x++)
for (var y = 0; y < bmp.Height; y++)
if (bmp.GetPixel(x, y) != expected.GetPixel(x, y))
{
Console.WriteLine("Pixel diff at {0}, {1}: {2} - {3}", x, y, bmp.GetPixel(x, y), expected.GetPixel(x, y));
retval += "pixel fail";
}
return retval != "" ? retval : "success";
}
[DllImport("msvcrt.dll", CallingConvention = CallingConvention.Cdecl)]
static extern int memcmp(IntPtr b1, IntPtr b2, long count);
}
Take a look at this, which pictorially illustrates a LockBits buffer - it shows the Rows of Strides and where Padding can appear at the end of the Stride (if it's needed).
https://web.archive.org/web/20141229164101/http://bobpowell.net/lockingbits.aspx
http://supercomputingblog.com/graphics/using-lockbits-in-gdi/
A stride is probably aligned to the 32bit (i.e. word) boundary (for efficiency purposes)...and the extra unused space at the end of the stride is to make the next Stride be aligned.
So that's what's giving you the random behaviour during the comparison...spurious data in the Padding region.
When you are using Format32bppRgb and Format32bppArgb that's naturally word aligned, so I guess you don't have any extra unused bits on the end, which is why it works.
Just an educated guess:
24 bits (3 bytes) is a little bit awkward on 32/64 bit hardware.
With this format there are bound to be buffers that are flushed out to a multiple of 4 bytes, leaving 1 or more bytes as 'don't care' . They can contain random data and the software doesn't feel obliged to zero them out. This will make memcmp fail.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With