Cannot Create Instances of Type Parameters. Cannot Declare Static Fields Whose Types are Type Parameters. Cannot Use Casts or instanceof With Parameterized Types. Cannot Create Arrays of Parameterized Types.
By using generics, programmers can implement generic algorithms that work on collections of different types, can be customized, and are type safe and easier to read.
To overcome the above problems of collections(type-safety, type casting) generics introduced in java 1.5v . Main objectives of generics are: 1) To provide type safety to the collections. 2) To resolve type casting problems. To hold only string type of objects we can create a generic version of ArrayList as follows.
Generics were introduced to the Java language to provide tighter type checks at compile time and to support generic programming. To implement generics, the Java compiler applies type erasure to: Replace all type parameters in generic types with their bounds or Object if the type parameters are unbounded.
Bad:
List<byte>
really is backed by a byte[]
for example, and no boxing is required)Good:
The biggest problem is that Java generics are a compile-time only thing, and you can subvert it at run-time. C# is praised because it does more run-time checking. There is some really good discussion in this post, and it links to other discussions.
The main problem is that Java doesn't actually have generics at runtime. It's a compile time feature.
When you create a generic class in Java they use a method called "Type Erasure" to actually remove all of the generic types from the class and essentially replace them with Object. The mile high version of generics is that the compiler simply inserts casts to the specified generic type whenever it appears in the method body.
This has a lot of downsides. One of the biggest, IMHO, is that you can't use reflection to inspect a generic type. Types are not actually generic in the byte code and hence can't be inspected as generics.
Great overview of the differences here: http://www.jprl.com/Blog/archive/development/2007/Aug-31.html
(1) leads to some very strange behaviour. The best example I can think of is. Assume:
public class MyClass<T> {
T getStuff() { ... }
List<String> getOtherStuff() { ... }
}
then declare two variables:
MyClass<T> m1 = ...
MyClass m2 = ...
Now call getOtherStuff()
:
List<String> list1 = m1.getOtherStuff();
List<String> list2 = m2.getOtherStuff();
The second has its generic type argument stripped off by the compiler because it is a raw type (meaning the parameterized type isn't supplied) even though it has nothing to do with the parameterized type.
I'll also mention my favourite declaration from the JDK:
public class Enum<T extends Enum<T>>
Apart from wildcarding (which is a mixed bag) I just think the .Net generics are better.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With