Quick note on the accepted answer: I disagree with a small part of Jeffrey's answer, namely the point that since Delegate
had to be a reference type, it follows that all delegates are reference types. (It simply isn't true that a multi-level inheritance chain rules out value types; all enum types, for example, inherit from System.Enum
, which in turn inherits from System.ValueType
, which inherits from System.Object
, all reference types.) However I think the fact that, fundamentally, all delegates in fact inherit not just from Delegate
but from MulticastDelegate
is the critical realization here. As Raymond points out in a comment to his answer, once you've committed to supporting multiple subscribers, there's really no point in not using a reference type for the delegate itself, given the need for an array somewhere.
See update at bottom.
It has always seemed strange to me that if I do this:
Action foo = obj.Foo;
I am creating a new Action
object, every time. I'm sure the cost is minimal, but it involves allocation of memory to later be garbage collected.
Given that delegates are inherently themselves immutable, I wonder why they couldn't be value types? Then a line of code like the one above would incur nothing more than a simple assignment to a memory address on the stack*.
Even considering anonymous functions, it seems (to me) this would work. Consider the following simple example.
Action foo = () => { obj.Foo(); };
In this case foo
does constitute a closure, yes. And in many cases, I imagine this does require an actual reference type (such as when local variables are closed over and are modified within the closure). But in some cases, it shouldn't. For instance in the above case, it seems that a type to support the closure could look like this: I take back my original point about this. The below really does need to be a reference type (or: it doesn't need to be, but if it's a struct
it's just going to get boxed anyway). So, disregard the below code example. I leave it only to provide context for answers the specfically mention it.
struct CompilerGenerated { Obj obj; public CompilerGenerated(Obj obj) { this.obj = obj; } public void CallFoo() { obj.Foo(); } } // ...elsewhere... // This would not require any long-term memory allocation // if Action were a value type, since CompilerGenerated // is also a value type. Action foo = new CompilerGenerated(obj).CallFoo;
Does this question make sense? As I see it, there are two possible explanations:
In the end, I'm not losing any sleep over this; it's just something I've been curious about for a little while.
Update: In response to Ani's comment, I see why the CompilerGenerated
type in my above example might as well be a reference type, since if a delegate is going to comprise a function pointer and an object pointer it'll need a reference type anyway (at least for anonymous functions using closures, since even if you introduced an additional generic type parameter—e.g., Action<TCaller>
—this wouldn't cover types that can't be named!). However, all this does is kind of make me regret bringing the question of compiler-generated types for closures into the discussion at all! My main question is about delegates, i.e., the thing with the function pointer and the object pointer. It still seems to me that could be a value type.
In other words, even if this...
Action foo = () => { obj.Foo(); };
...requires the creation of one reference type object (to support the closure, and give the delegate something to reference), why does it require the creation of two (the closure-supporting object plus the Action
delegate)?
*Yes, yes, implementation detail, I know! All I really mean is short-term memory storage.
Delegates are reference types.
A delegate is a type-safe function pointer that can reference a method that has the same signature as that of the delegate. You can take advantage of delegates in C# to implement events and call-back methods. A multicast delegate is one that can point to one or more methods that have identical signatures.
If you think of delegates as being similar to interface definitions for a specific type of method, you can start to see why delegates exist. They allow clients of our delegates to ignore all the details of their implementations - even their names!
Delegates allow methods to be passed as parameters. Delegates can be used to define callback methods. Delegates can be chained together; for example, multiple methods can be called on a single event. Methods don't have to match the delegate type exactly.
The question boils down to this: the CLI (Common Language Infrastructure) specification says that delegates are reference types. Why is this so?
One reason is clearly visible in the .NET Framework today. In the original design, there were two kinds of delegates: normal delegates and "multicast" delegates, which could have more than one target in their invocation list. The MulticastDelegate
class inherits from Delegate
. Since you can't inherit from a value type, Delegate
had to be a reference type.
In the end, all actual delegates ended up being multicast delegates, but at that stage in the process, it was too late to merge the two classes. See this blog post about this exact topic:
We abandoned the distinction between Delegate and MulticastDelegate towards the end of V1. At that time, it would have been a massive change to merge the two classes so we didn’t do so. You should pretend that they are merged and that only MulticastDelegate exists.
In addition, delegates currently have 4-6 fields, all pointers. 16 bytes is usually considered the upper bound where saving memory still wins out over extra copying. A 64-bit MulticastDelegate
takes up 48 bytes. Given this, and the fact that they were using inheritance suggests that a class was the natural choice.
There is only one reason that Delegate needs to be a class, but it's a big one: while a delegate could be small enough to allow efficient storage as a value type (8 bytes on 32-bit systems, or 16 bytes on 64-bit systems), there's no way it could be small enough to efficiently guarantee if one thread attempts to write a delegate while another thread attempts to execute it, the latter thread wouldn't end up either invoking the old method on the new target, or the new method on the old target. Allowing such a thing to occur would be a major security hole. Having delegates be reference types avoids this risk.
Actually, even better than having delegates be structure types would be having them be interfaces. Creating a closure requires creating two heap objects: a compiler-generated object to hold any closed-over variables, and a delegate to invoke the proper method on that object. If delegates were interfaces, the object which held the closed-over variables could itself be used as the delegate, with no other object required.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With