suppose I have a Dataframe like this. I want to convert this to a 2-level multiIndex Dataframe.
dt st close volume
0 20100101 000001.sz 1 10000
1 20100101 000002.sz 10 50000
2 20100101 000003.sz 5 1000
3 20100101 000004.sz 15 7000
4 20100101 000005.sz 100 100000
5 20100102 000001.sz 2 20000
6 20100102 000002.sz 20 60000
7 20100102 000003.sz 6 2000
8 20100102 000004.sz 20 8000
9 20100102 000005.sz 110 110000
But when I try this code:
data = pd.read_csv('data/trial.csv')
print(data)
idx = pd.MultiIndex.from_product([data.dt.unique(),
data.st.unique()],
names=['dt', 'st'])
col = ['close', 'volume']
df = pd.DataFrame(data, idx, col)
print(df)
I find that all the element are NaN
close volume
dt st
20100101 000001.sz NaN NaN
000002.sz NaN NaN
000003.sz NaN NaN
000004.sz NaN NaN
000005.sz NaN NaN
20100102 000001.sz NaN NaN
000002.sz NaN NaN
000003.sz NaN NaN
000004.sz NaN NaN
000005.sz NaN NaN
How to handle this situation? Thanks.
You need only parameter index_col in read_csv:
#by positions of columns
data = pd.read_csv('data/trial.csv', index_col=[0,1])
Or:
#by names of columns
data = pd.read_csv('data/trial.csv', index_col=['dt', 'st'])
print (data)
close volume
dt st
20100101 000001.sz 1 10000
000002.sz 10 50000
000003.sz 5 1000
000004.sz 15 7000
000005.sz 100 100000
20100102 000001.sz 2 20000
000002.sz 20 60000
000003.sz 6 2000
000004.sz 20 8000
000005.sz 110 110000
Why all element are all NaN when construct a multiIndex Dataframe?
Reason is in DataFrame constructor:
df = pd.DataFrame(data, idx, col)
DataFrame called data has RangeIndex and not align with new MultiIndex, so get NaNs in data.
Possible solution if always each dt has same st values is filter Dataframe by columns names and then convert to numpy array, but better are index_col and set_index solutions:
df = pd.DataFrame(data[col].values, idx, col)
Try using set_index() like this:
new_df = df.set_index(['dt', 'st'])
Result:
>>> new_df
close volume
dt st
20100101 000001.sz 1 10000
000002.sz 10 50000
000003.sz 5 1000
000004.sz 15 7000
000005.sz 100 100000
20100102 000001.sz 2 20000
000002.sz 20 60000
000003.sz 6 2000
000004.sz 20 8000
000005.sz 110 110000
>>> new_df.index
MultiIndex(levels=[[20100101, 20100102], ['000001.sz', '000002.sz', '000003.sz', '000004.sz', '000005.sz']],
labels=[[0, 0, 0, 0, 0, 1, 1, 1, 1, 1], [0, 1, 2, 3, 4, 0, 1, 2, 3, 4]],
names=['dt', 'st'])
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With