The dependency injection technique enables you to improve this even further. It provides a way to separate the creation of an object from its usage. By doing that, you can replace a dependency without changing any code and it also reduces the boilerplate code in your business logic.
A DI box is primarily used to allow you to run a long cable from an instrument such as an electric guitar or bass guitar without adding noise or losing signal quality. High impedance signals tend to be much more prone to noise and keeping cable lengths under 8 meters (25 ft) is recommended.
Basically, dependency injection makes some (usually but not always valid) assumptions about the nature of your objects. If those are wrong, DI may not be the best solution: First, most basically, DI assumes that tight coupling of object implementations is ALWAYS bad.
Dependency injection is a pattern to allow your application to inject objects on the fly to classes that need them, without forcing those classes to be responsible for those objects. It allows your code to be more loosely coupled, and Entity Framework Core plugs in to this same system of services.
Two words, unit testing.
One of the most compelling reasons for DI is to allow easier unit testing without having to hit a database and worry about setting up 'test' data.
DI is very useful for decoupling your system. If all you're using it for is to decouple the database implementation from the rest of your application, then either your application is pretty simple or you need to do a lot more analysis on the problem domain and discover what components within your problem domain are the most likely to change and the components within your system that have a large amount of coupling.
DI is most useful when you're aiming for code reuse, versatility and robustness to changes in your problem domain.
How relevant it is to your project depends upon the expected lifespan of your code. Depending on the type of work you're doing zero reuse from one project to the next for the majority of code you're writing might actually be quite acceptable.
An example for use the use of DI is in creating an application that can be deployed for several clients using DI to inject customisations for the client, which could also be described as the GOF Strategy pattern. Many of the GOF patterns can be facilitated with the use of a DI framework.
DI is more relevant to Enterprise application development in which you have a large amount of code, complicated business requirements and an expectation (or hope) that the system will be maintained for many years or decades.
Even if you don't change the structure of your program during development phases you will find out you need to access several subsystems from different parts of your program. With DI each of your classes just needs to ask for services and you're free of having to provide all the wiring manually.
This really helps me on concentrating on the interaction of things in the software design and not on "who needs to carry what around because someone else needs it later".
Additionally it also just saves a LOT of work writing boilerplate code. Do I need a singleton? I just configure a class to be one. Can I test with such a "singleton"? Yes, I still can (since I just CONFIGURED it to exist only once, but the test can instantiate an alternative implementation).
But, by the way before I was using DI I didn't really understand its worth, but trying it was a real eye-opener to me: My designs are a lot more object-oriented as they have been before. By the way, with the current application I DON'T unit-test (bad, bad me) but I STILL couldn't live with DI anymore. It is so much easier moving things around and keeping classes small and simple.
While I semi-agree with you with the DB example, one of the large things that I found helpful to use DI is to help me test the layer I build on top of the database.
Here's an example...
You have your database.
You have your code that accesses the database and returns objects
You have business domain objects that take the previous item's objects and do some logic with them.
If you merge the data access with your business domain logic, your domain objects can become difficult to test. DI allows you to inject your own data access objects into your domain so that you don't depend on the database for testing or possibly demonstrations (ran a demo where some data was pulled in from xml instead of a database).
Abstracting 3rd party components and frameworks like this would also help you.
Aside from the testing example, there's a few places where DI can be used through a Design by Contract approach. You may find it appropriate to create a processing engine of sorts that calls methods of the objects you're injecting into it. While it may not truly "process it" it runs the methods that have different implementation in each object you provide.
I saw an example of this where the every business domain object had a "Save" function that the was called after it was injected into the processor. The processor modified the component with configuration information and Save handled the object's primary state. In essence, DI supplemented the polymorphic method implementation of the objects that conformed to the Interface.
Dependency Injection gives you the ability to test specific units of code in isolation.
Say I have a class Foo
for example that takes an instance of a class Bar
in its constructor. One of the methods on Foo
might check that a Property value of Bar
is one which allows some other processing of Bar
to take place.
public class Foo
{
private Bar _bar;
public Foo(Bar bar)
{
_bar = bar;
}
public bool IsPropertyOfBarValid()
{
return _bar.SomeProperty == PropertyEnum.ValidProperty;
}
}
Now let's say that Bar
is instantiated and it's Properties are set to data from some datasource in it's constructor. How might I go about testing the IsPropertyOfBarValid()
method of Foo
(ignoring the fact that this is an incredibly simple example)? Well, Foo
is dependent on the instance of Bar
passed in to the constructor, which in turn is dependent on the data from the datasource that it's properties are set to. What we would like to do is have some way of isolating Foo
from the resources it depends upon so that we can test it in isolation
This is where Dependency Injection comes in. What we want is to have some way of faking an instance of Bar
passed to Foo
such that we can control the properties set on this fake Bar
and achieve what we set out to do, test that the implementation of IsPropertyOfBarValid()
does what we expect it to do, i.e. return true when Bar.SomeProperty == PropertyEnum.ValidProperty
and false for any other value.
There are two types of fake object, Mocks and Stubs. Stubs provide input for the application under test so that the test can be performed on something else. Mocks on the other hand provide input to the test to decide on pass\fail.
Martin Fowler has a great article on the difference between Mocks and Stubs
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With