Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

When should I use aov() and when anova()?

Tags:

r

anova

I have referred to much of online literature but it is increasing my confusion. Much of the discussion is too technical with terms unbalanced designs and I, II or III factor ANOVA and everything.

I only know that aov() uses lm() internally and is useful for data with factors. Whereas anova() can be used for different models on same dataset. Is my understanding correct?

like image 552
Chadwick Robbert Avatar asked Nov 25 '16 23:11

Chadwick Robbert


People also ask

What is the use of AOV?

Analysis of Variance (aov) is used to determine if the means of two or more groups differ significantly from each other. Responses are assumed to be independent of each other, Normally distributed (within each group), and the within-group variances are assumed equal.

What is the difference between AOV and LM in R?

AOV would use Type I (Sequential) by default. LM results are invariant to order while aov results depend on the order of the factors.

Why do we do ANOVA test?

ANOVA is helpful for testing three or more variables. It is similar to multiple two-sample t-tests. However, it results in fewer type I errors and is appropriate for a range of issues. ANOVA groups differences by comparing the means of each group and includes spreading out the variance into diverse sources.

What does AOV function do in R?

The R function aov() can be used to answer to this question. The function summary. aov() is used to summarize the analysis of variance model. The output includes the columns F value and Pr(>F) corresponding to the p-value of the test.


1 Answers

anova is substantially different from aov. Why not read R's documentation ?aov and ?anova? In short:

  • aov fits a model (as you are already aware, internally it calls lm), so it produces regression coefficients, fitted values, residuals, etc; It produces an object of primary class "aov" but also a secondary class "lm". So, it is an augmentation of an "lm" object.
  • anova is a generic function. In your scenario you are referring to anova.lm or anova.lmlist (read ?anova.lm for more info). The former analyses a fitted model (produced by lm or aov), while the latter analyses several nested (increasingly large) fitted models (by lm or aov). They both aim at producing type I (sequential) ANOVA table.

In practice, you first use lm / aov to fit a model, then use anova to analyse the result. There is nothing better than trying a small example:

fit <- aov(sr ~ ., data = LifeCycleSavings)  ## can also use `lm`
z <- anova(fit)

Now, have a look at their structure. aov returns a large object:

str(fit)

#List of 12
# $ coefficients : Named num [1:5] 28.566087 -0.461193 -1.691498 -0.000337 0.409695
#  ..- attr(*, "names")= chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
# $ residuals    : Named num [1:50] 0.864 0.616 2.219 -0.698 3.553 ...
#  ..- attr(*, "names")= chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
# $ effects      : Named num [1:50] -68.38 -14.29 7.3 -3.52 -7.94 ...
#  ..- attr(*, "names")= chr [1:50] "(Intercept)" "pop15" "pop75" "dpi" ...
# $ rank         : int 5
# $ fitted.values: Named num [1:50] 10.57 11.45 10.95 6.45 9.33 ...
#  ..- attr(*, "names")= chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
# $ assign       : int [1:5] 0 1 2 3 4
# $ qr           :List of 5
#  ..$ qr   : num [1:50, 1:5] -7.071 0.141 0.141 0.141 0.141 ...
#  .. ..- attr(*, "dimnames")=List of 2
#  .. .. ..$ : chr [1:50] "Australia" "Austria" "Belgium" "Bolivia" ...
#  .. .. ..$ : chr [1:5] "(Intercept)" "pop15" "pop75" "dpi" ...
#  .. ..- attr(*, "assign")= int [1:5] 0 1 2 3 4
#  ..$ qraux: num [1:5] 1.14 1.17 1.16 1.15 1.05
#  ..$ pivot: int [1:5] 1 2 3 4 5
#  ..$ tol  : num 1e-07
#  ..$ rank : int 5
#  ..- attr(*, "class")= chr "qr"
# $ df.residual  : int 45
# $ xlevels      : Named list()
# $ call         : language aov(formula = sr ~ ., data = LifeCycleSavings)
# $ terms        :Classes 'terms', 'formula'  language sr ~ pop15 + pop75 + dpi + ddpi
#  .. ..- attr(*, "variables")= language list(sr, pop15, pop75, dpi, ddpi)
#  .. ..- attr(*, "factors")= int [1:5, 1:4] 0 1 0 0 0 0 0 1 0 0 ...
#  .. .. ..- attr(*, "dimnames")=List of 2
#  .. .. .. ..$ : chr [1:5] "sr" "pop15" "pop75" "dpi" ...
#  .. .. .. ..$ : chr [1:4] "pop15" "pop75" "dpi" "ddpi"
#  .. ..- attr(*, "term.labels")= chr [1:4] "pop15" "pop75" "dpi" "ddpi"
#  .. ..- attr(*, "order")= int [1:4] 1 1 1 1
#  .. ..- attr(*, "intercept")= int 1
#  .. ..- attr(*, "response")= int 1
#  .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
#  .. ..- attr(*, "predvars")= language list(sr, pop15, pop75, dpi, ddpi)
#  .. ..- attr(*, "dataClasses")= Named chr [1:5] "numeric" "numeric" "numeric" "numeric" ...
#  .. .. ..- attr(*, "names")= chr [1:5] "sr" "pop15" "pop75" "dpi" ...
# $ model        :'data.frame':	50 obs. of  5 variables:
#  ..$ sr   : num [1:50] 11.43 12.07 13.17 5.75 12.88 ...
#  ..$ pop15: num [1:50] 29.4 23.3 23.8 41.9 42.2 ...
#  ..$ pop75: num [1:50] 2.87 4.41 4.43 1.67 0.83 2.85 1.34 0.67 1.06 1.14 ...
#  ..$ dpi  : num [1:50] 2330 1508 2108 189 728 ...
#  ..$ ddpi : num [1:50] 2.87 3.93 3.82 0.22 4.56 2.43 2.67 6.51 3.08 2.8 ...
#  ..- attr(*, "terms")=Classes 'terms', 'formula'  language sr ~ pop15 + pop75 + dpi + ddpi
#  .. .. ..- attr(*, "variables")= language list(sr, pop15, pop75, dpi, ddpi)
#  .. .. ..- attr(*, "factors")= int [1:5, 1:4] 0 1 0 0 0 0 0 1 0 0 ...
#  .. .. .. ..- attr(*, "dimnames")=List of 2
#  .. .. .. .. ..$ : chr [1:5] "sr" "pop15" "pop75" "dpi" ...
#  .. .. .. .. ..$ : chr [1:4] "pop15" "pop75" "dpi" "ddpi"
#  .. .. ..- attr(*, "term.labels")= chr [1:4] "pop15" "pop75" "dpi" "ddpi"
#  .. .. ..- attr(*, "order")= int [1:4] 1 1 1 1
#  .. .. ..- attr(*, "intercept")= int 1
#  .. .. ..- attr(*, "response")= int 1
#  .. .. ..- attr(*, ".Environment")=<environment: R_GlobalEnv> 
#  .. .. ..- attr(*, "predvars")= language list(sr, pop15, pop75, dpi, ddpi)
#  .. .. ..- attr(*, "dataClasses")= Named chr [1:5] "numeric" "numeric" "numeric" "numeric" ...
#  .. .. .. ..- attr(*, "names")= chr [1:5] "sr" "pop15" "pop75" "dpi" ...
# - attr(*, "class")= chr [1:2] "aov" "lm"

While anova returns:

str(z)

#Classes ‘anova’ and 'data.frame':  5 obs. of  5 variables:
# $ Df     : int  1 1 1 1 45
# $ Sum Sq : num  204.1 53.3 12.4 63.1 650.7
# $ Mean Sq: num  204.1 53.3 12.4 63.1 14.5
# $ F value: num  14.116 3.689 0.858 4.36 NA
# $ Pr(>F) : num  0.000492 0.061125 0.359355 0.042471 NA
# - attr(*, "heading")= chr  "Analysis of Variance Table\n" "Response: sr"
like image 104
Zheyuan Li Avatar answered Sep 29 '22 12:09

Zheyuan Li