I have been noticing some very strange usage of O(1) in discussion of algorithms involving hashing and types of search, often in the context of using a dictionary type provided by the language system, or using dictionary or hash-array types used using array-index notation.
Basically, O(1) means bounded by a constant time and (typically) fixed space. Some pretty fundamental operations are O(1), although using intermediate languages and special VMs tends to distort ones thinking here (e.g., how does one amortize the garbage collector and other dynamic processes over what would otherwise be O(1) activities).
But ignoring amortization of latencies, garbage-collection, and so on, I still don't understand how the leap to assumption that certain techniques that involve some kind of searching can be O(1) except under very special conditions.
Although I have noticed this before, an example just showed up in the Pandincus question, "'Proper’ collection to use to obtain items in O(1) time in C# .NET?".
As I remarked there, the only collection I know of that provides O(1) access as a guaranteed bound is a fixed-bound array with an integer index value. The presumption is that the array is implemented by some mapping to random access memory that uses O(1) operations to locate the cell having that index.
For collections that involve some sort of searching to determine the location of a matching cell for a different kind of index (or for a sparse array with integer index), life is not so easy. In particular, if there are collisons and congestion is possible, access is not exactly O(1). And if the collection is flexible, one must recognize and amortize the cost of expanding the underlying structure (such as a tree or a hash table) for which congestion relief (e.g., high collision incidence or tree imbalance).
I would never have thought to speak of these flexible and dynamic structures as O(1). Yet I see them offered up as O(1) solutions without any identification of the conditions that must be maintained to actually have O(1) access be assured (as well as have that constant be negligibly small).
THE QUESTION: All of this preparation is really for a question. What is the casualness around O(1) and why is it accepted so blindly? Is it recognized that even O(1) can be undesirably large, even though near-constant? Or is O(1) simply the appropriation of a computational-complexity notion to informal use? I'm puzzled.
UPDATE: The Answers and comments point out where I was casual about defining O(1) myself, and I have repaired that. I am still looking for good answers, and some of the comment threads are rather more interesting than their answers, in a few cases.
O (1) means Random Access. In any Random Access Memory, the time taken to access any element at any location is the same. Here time can be any integer, but the only thing to remember is time taken to retrieve the element at (n-1)th or nth location will be same (ie constant). Whereas O (n) is dependent on the size of n.
Some pretty fundamental operations are O (1), although using intermediate languages and special VMs tends to distort ones thinking here (e.g., how does one amortize the garbage collector and other dynamic processes over what would otherwise be O (1) activities).
This is because we have to iterate through the array inspecting each element one at a time. O (1) means the time to access something is independent of the number of items in the collection. O (N) would mean the time to access an item is a proportional to the number (N) of items in the collection.
To say that runtime is O(1)means that there is a constant csuch that the runtime is bounded above by c, independent of the input. For example, returning the first element of an array of nintegers is O(1): int firstElement(int *a, int n) { return a;
The problem is that people are really sloppy with terminology. There are 3 important but distinct classes here:
This is simple - all operations take no more than a constant amount of time in the worst case, and therefore in all cases. Accessing an element of an array is O(1)
worst-case.
Amortized means that not every operation is O(1)
in the worst case, but for any sequence of N operations, the total cost of the sequence is no O(N)
in the worst case. This means that even though we can't bound the cost of any single operation by a constant, there will always be enough "quick" operations to make up for the "slow" operations such that the running time of the sequence of operations is linear in the number of operations.
For example, the standard Dynamic Array which doubles its capacity when it fills up requires O(1)
amortized time to insert an element at the end, even though some insertions require O(N)
time - there are always enough O(1)
insertions that inserting N items always takes O(N)
time total.
This one is the trickiest. There are two possible definitions of average-case: one for randomized algorithms with fixed inputs, and one for deterministic algorithms with randomized inputs.
For randomized algorithms with fixed inputs, we can calculate the average-case running time for any given input by analyzing the algorithm and determining the probability distribution of all possible running times and taking the average over that distribution (depending on the algorithm, this may or may not be possible due to the Halting Problem).
In the other case, we need a probability distribution over the inputs. For example, if we were to measure a sorting algorithm, one such probability distribution would be the distribution that has all N! possible permutations of the input equally likely. Then, the average-case running time is the average running time over all possible inputs, weighted by the probability of each input.
Since the subject of this question is hash tables, which are deterministic, I'm going to focus on the second definition of average-case. Now, we can't always determine the probability distribution of the inputs because, well, we could be hashing just about anything, and those items could be coming from a user typing them in or from a file system. Therefore, when talking about hash tables, most people just assume that the inputs are well-behaved and the hash function is well behaved such that the hash value of any input is essentially randomly distributed uniformly over the range of possible hash values.
Take a moment and let that last point sink in - the O(1)
average-case performance for hash tables comes from assuming all hash values are uniformly distributed. If this assumption is violated (which it usually isn't, but it certainly can and does happen), the running time is no longer O(1)
on average.
See also Denial of Service by Algorithmic Complexity. In this paper, the authors discuss how they exploited some weaknesses in the default hash functions used by two versions of Perl to generate large numbers of strings with hash collisions. Armed with this list of strings, they generated a denial-of-service attack on some webservers by feeding them these strings that resulted in the worst-case O(N)
behavior in the hash tables used by the webservers.
My understanding is that O(1) is not necessarily constant; rather, it is not dependent on the variables under consideration. Thus a hash lookup can be said to be O(1) with respect to the number of elements in the hash, but not with respect to the length of the data being hashed or ratio of elements to buckets in the hash.
The other element of confusion is that big O notation describes limiting behavior. Thus, a function f(N) for small values of N may indeed show great variation, but you would still be correct to say it is O(1) if the limit as N approaches infinity is constant with respect to N.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With