Explanation: The copy constructor can be defined as private. If we make it private then the objects of the class can't be copied. It can be used when a class used dynamic memory allocation. Explanation: The object should not be modified in the copy constructor.
A copy constructor is a member function of a class that initializes an object with an existing object of the same class. In other words, it creates an exact copy of an already existing object and stores it into a new object.
You might want to implement some of the methods of the class using a copy constructor, but not to expose it outside of the class. So then you make it private. Like any other method.
A Copy Constructor in Java is a special type of constructor that is used to create a new object using the existing object of a class that we have created previously. It creates a new object by initializing the object with the instance of the same class.
One use case is the singleton pattern where there can only be exactly one instance of a class. In this case, you need make your constructors and assignment operator= private so that there is no way of creating more than one object. The only way to create an object is via your GetInstance() function as shown below.
// An example of singleton pattern
class CMySingleton
{
public:
static CMySingleton& GetInstance()
{
static CMySingleton singleton;
return singleton;
}
// Other non-static member functions
private:
CMySingleton() {} // Private constructor
~CMySingleton() {}
CMySingleton(const CMySingleton&); // Prevent copy-construction
CMySingleton& operator=(const CMySingleton&); // Prevent assignment
};
int main(int argc, char* argv[])
{
// create a single instance of the class
CMySingleton &object = CMySingleton::GetInstance();
// compile fail due to private constructor
CMySingleton object1;
// compile fail due to private copy constructor
CMySingleton object2(object);
// compile fail due to private assignment operator
object1 = object;
// ..
return 0;
}
Some objects represent particular entities that can't or shouldn't be copied. For example, you may prevent copying of an object that represents the log file used by an application, corresponding to the expectation that a single log file will be used by all parts of the code. Use of an accidentally or inappropriately copied object could lead to out-of-order content appearing in the log, inaccurate records of current log size, multiple attempts (some failing) to "roll" to a new log filename or rename the existing one.
Another use is to enforce copying via a virtual function. As constructors can't be virtual
, a common practice is to prevent direct access to the copy constructor and provide a virtual Base* clone()
method that returns a copy of the actual run-time type to which a pointer points. This prevents the accidental slicing that Base b(derived)
would exhibit.
Another example: a dead-simple smart pointer object that simply deletes the pointer it's given in the constructor: if it doesn't support reference counting or some other manner of handling multiple owners, and doesn't want to have risk awkward unintended std::auto_ptr
style transfer of ownership, then simply hiding the copy constructor gives a great little smart pointer that's fast and efficient for the limited cases where it's usable. A compile time error about attempting to copy it would effectively ask the programmer "hey - if you really want to do that change me to a shared pointer, otherwise back off!".
A very bad example:
class Vehicle : { int wheels; Vehicle(int w) : wheels(w) {} }
class Car : public Vehicle { Engine * engine; public Car(Engine * e) : Vehicle(4), engine(e) }
...
Car c(new Engine());
Car c2(c); // Now both cars share the same engine!
Vehicle v;
v = c; // This doesn't even make any sense; all you have is a Vehicle with 4 wheels but no engine.
What does it mean to "copy" a car? (Is a car a car model, or an instance of a car? Does copying it preserve the vehicle registration?)
What does it mean to assign a vehicle to another one?
If the operations are meaningless (or merely unimplemented), the standard thing to do is to make the copy constructor and assignment operator private, causing a compile error if they're used instead of weird behaviour.
A common reason to make copy constructor and copy assignment private is to disable default implementation of these operations. However, in C++ 0x there are special syntax =delete for such purpose. So in C++ 0x making copy ctor private seems to be resrtricted to very exotic cases.
Copy ctors and assignments are rather syntactic sugar; so such a "private sugar" seems as symptom of greed :)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With