Schemaless databases store data as Key/Value pairs (also known as KV) or as JSON documents. Based on the use cases users have the choice to either store data as KV pairs or as JSON documents.
NoSQL databases are often better suited to storing and modeling structured, semi-structured, and unstructured data in one database.
I'll just call out one or two common reasons (I'm sure people will be writing essay answers)
With highly distributed systems, any given data set may be spread across multiple servers. When that happens, the relational constraints which the DB engine can guarantee are greatly reduced. Some of your referential integrity will need to be handled in application code. When doing so, you will quickly discover several pain points:
The outcome is that the logic is less encapsulated, less portable, and MUCH more expensive to change. Many devs find themselves writing more logic in app code and less in the database. Taken to the extreme, the database schema becomes irrelevant.
Schema management—especially on systems where downtime is not an option—is difficult. reducing the schema complexity reduces that difficulty.
ACID doesn't work very well for distributed systems (BASE, CAP, etc). The SQL language (and the entire relational model to a certain extent) is optimized for a transactional ACID world. So some of the SQL language features and best practices are useless while others are actually harmful. Some developers feel uncomfortable about "against the grain" and prefer to drop SQL entirely in favor of a language which was designed from the ground up for their requirements.
Cost: most RDBMS systems aren't free. The leaders in scaling (Oracle, Sybase, SQL Server) are all commercial products. When dealing with large ("web scale") systems, database licensing costs can meet or exceed the hardware costs! The costs are high enough to change the normal build/buy considerations drastically towards building a custom solution on top of an OSS offering (all the significant NOSQL offerings are OSS)
The primary concern should be what do you need to do with your data. If you have a huge data set and are finding a traditional RDBMS to be a bottleneck then you may want to experiment with a schemaless or a a NOSQL solution.
Most environments that I am aware of using NOSQL solutions also use an RDBMS solution in some form or fashion. RDBMS based solutions are the norm where data integrity is extremely important and you need ACID transactions. However if your system is not highly transaction based but you need to scale up or scale out real quick, a NOSQL solution may be desirable.
Schemaless is great for two reasons:
I've used both SQL and No-SQL for production applications in Ruby on Rails. I'm not a database expert and I have to confess to googling ACID and similar terms as they're not familiar to me.
"Ah ha! Another know-nothing trend follower jumping on the latest bandwagon" you may say. But, actually, I'm really pleased with my decision to use MongoDB on our most recent 2 year old app and here's why...
The flip-side of brain-optimising intuitiveness was my experience with the Magento e-commerce system. I don't want to bash it because it served me well at the time but it really hit the processor hard trying to calculate the attributes for each product. The underlying reason was the Entity-Attribute-Value store of product data. Cache or be damned was the solution.
The major advantage to me is the optimisation in the only place that really matters - your own brain. So many technologies are critiqued on their efficiency in memory, processors, hardware and yet having a DB that's extremely intuitive to understand brings its own merits. We've found it quick to add features to our code because the database simply looks a lot like the real world we're modelling. When I've asked e-commerce clients to present me with their product list they will naturally tend to use Excel (think table store). The first columns are easy:
Then it gets harder and covered in notes, colour coding and links to other tables (yep.. relationships)
So it ends in a terrible mess of Excel tables that make no sense to me and not much sense to the people who work with the products day in and day out. We throw our arms in the air and decide to go through the catalogue and then it hits me! Wouldn't it be great if you could store the data as it appears in the catalogue!? Just collections of records on each product that just lists the attribute of that product. You can then pick out common attributes to index for retrieval at a later date. Of course, that's a document store.
In summary, document stores are great when you have a sparse matrix problem or objects that mutate their attributes over time. Having lived in a No-SQL world for 2 years, I can't think of a real world application that doesn't have those features because the world itself looks like a document store.
I've only played with MongoDB but one thing that really interested me was how you could nest documents. In MongoDB a document is basically like a record. This is really nice because traditionally, in a RDBMS, if you needed to pull a "Person" record and get the associated address, employer info, etc. you'd frequently have to go to multiple tables, join them up, make multiple database calls. In a NoSQL solution like MongoDB, you can just nest the associated records (documents) and not have to mess with foreign keys, joining, multiple database calls. Everything associated with that one record is pulled.
This is especially handy when dealing with objects. You can in many cases just store an object as a series of nested documents.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With