

Questions
Linux
Laravel
Mysql
Ubuntu
Git
Menu

HTML
CSS
JAVASCRIPT
SQL
PYTHON
PHP
BOOTSTRAP
JAVA
JQUERY
R
React
Kotlin

×

Linux
Laravel
Mysql
Ubuntu
Git

What to do with CIDs in text extracted by PDFMiner?

Tags:

python

text

pdf

pdfminer

I've some PDFs which are in Hindi, and have extractable text. I used pdfminer.six for python 3.6, to do the extraction. The output looks like:

As one can see, there are a number of characters that are converted into the form "(cid :number)".

On further analysis, I found out that a PDF contains CMAPs which map character codes to glyph indices. So, a CID is a character identity for the glyph it maps to, inside the CMAP table.

But how are these character codes related to Unicode values? Basically, how is a PDF viewer able to show the glyph using this mapping?

Moreover, according to a comment to this similar question, this process may not be legal. But I'm not trying to steal someone's font. I want the text. How does this process become illegal?

Since there are many questions like this one, I want to clarify that I do not aim at solving the "cid" problem. I want to clarify the reasons for the problem and reasons for it's illegality.

EDIT: This issues page for pdfminer discusses this issue, where the author clearly says that there seems to be no reliable workaround for this issue. Is there some general, basic limitation (like, no access to font) that makes this issue continual?

419

asked Mar 07 '23 01:03
Mooncrater

1 Answers

But how are these character codes related to Unicode values? Basically, how is a PDF viewer able to show the glyph using this mapping?

The character codes one finds in the PDF content streams do not need to be related to Unicode values in any obvious way. In particular, a PDF viewer does not at all need a Unicode code point for a character code to show the matching glyph.

In a PDF a font has a mapping (or a sequence of mappings) from character code to glyph ID in the font program, and this mapping may be completely arbitrary.

E.g. in case of embedded font subsets the subset font program often is created by giving the first glyph used on a page a starting glyph id n, then giving the second, different glyph on that page id n+1, then the next, different glyph id n+2 etc etc, and then the character codes often are identical to the glyph ids, i.e. the mapping above is the identity mapping. If there are no additional information anymore, a text extractor has no chance to properly do its job.

I want to clarify the reasons for the problem

Regular text extraction usually has the following options to find the Unicode value for a character code:

	
A PDF font may include a ToUnicode map (mapping from character code to Unicode) to support operations like searching strings or copy & paste in a PDF viewer. This map immediately provides the mapping the text extractor needs.

Beware, though: these ToUnicode maps can be incomplete and sometimes even contain intentionally incorrect mappings!

	
The PDF font encoding definition may contain the name of a pre-defined standard encoding (e.g. WinAnsiEncoding or GBpc-EUC-H) or a standardized character name (e.g. space, seven, or ntilde) for a given code. A text extractor merely needs to know the encoding represented by that encoding name or the code represented by that character name.

But the Encoding may also be an identity (Identity–H and Identity–V with character code = glyph code) which doesn't give away anything, and a character name may also be non-standardized (e.g. g17).

The PDF specification says: If these methods fail to produce a Unicode value, there is no way to determine what the character code represents in which case a conforming reader may choose a character code of their choosing.

In case of your text extraction output I would guess the PDF font has an incomplete ToUnicode map.

Actually there are some more locations to look for additional information, e.g. the font program might include an own mapping of its glyphs to Unicode, but those additional information also are optional.

... and reasons for it's illegality.

In case of all the above options I don't see any sensible font license being violated, in particular as most of those options didn't even look into the font program (e.g. the *.ttf) itself, merely into the PDF metadata wrapping it.

On the other hand, if e.g. you had the idea to construct ToUnicode maps for those fonts missing such a map by drawing each glyph of the font onto a bitmap, nicely separated from anything else, and applying OCR to it, you as the recipient of the PDF suddenly would use the font program to draw something else than the original document, and this might be considered usage not covered by the license.

198

answered Mar 14 '23 12:03

mkl

Sign in to
Comment

Related questions

Inconsistent results with KMeans between Apache Spark and scikit_learn

Change calculator only works if one type of coin needed

Randomly select subset of all combination in Python

Simplify sort of Excel cell names in python

How to remove a list of indices from list

What is the best way to load multiple files into memory in parallel using python 3.6?

Testing logger Messages with unittest

NotImplementedError: `fit_generator` is not yet enabled for unbuilt Model subclasses

Python Beautifulsoup Getting Attribute Value

Subcommands in Python Bot

How to handle multiple keys for a dictionary in python?

Append values to Pandas series

Connect QWebEngine to proxy

Problems with __future__ and swagger_client in Python

How to minimize space cost when using itertools.tee to check the next element?

Concatenating into a new field in a Django query

ipython uses wrong python version with anaconda

Is nested string literal interpolation possible?

How can I reference the path of a notebook in Databricks/what is %run doing?

Calculate the angle between the rows of two matrices in numpy

	Recent Activity

	

Apple Pay - authorize.net returns error 153 only when live, sandbox works

	

How to continue cursor loop even error occured in the loop

	

python find all neighbours of a given node in a list of lists

	

Fatal error: Call to a member function setColumn() on a non-object in Magento

	

Count how many of each value from a field with MySQL and PHP

	

Python 32-bit development on 64-bit Windows [closed]

Donate For Us

If you love us? You can donate to us via Paypal or buy me a coffee
so we can maintain and grow! Thank you!

Donate Us With

© 2021 exchangetuts
Privacy Policy
Terms
Contact

