Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

What should I do when <tr> has rowspan

If the row has rowspan element , how to make the row correspond to the table as in wikipedia page.

from bs4 import BeautifulSoup
import urllib2
from lxml.html import fromstring 
import re
import csv
import pandas as pd

wiki = "http://en.wikipedia.org/wiki/List_of_England_Test_cricket_records"
header = {'User-Agent': 'Mozilla/5.0'} #Needed to prevent 403 error on Wikipedia
req = urllib2.Request(wiki,headers=header)
page = urllib2.urlopen(req)
soup = BeautifulSoup(page)

try:
    table = soup.find_all('table')[6]
except AttributeError as e:
    print 'No tables found, exiting'

try:
    first = table.find_all('tr')[0]
except AttributeError as e:
    print 'No table row found, exiting'

try:
    allRows = table.find_all('tr')[1:-1]
except AttributeError as e:
    print 'No table row found, exiting'


headers = [header.get_text() for header in first.find_all(['th', 'td'])]
results = [[data.get_text() for data in row.find_all(['th', 'td'])] for row in allRows]


df = pd.DataFrame(data=results, columns=headers)
df

I get the table as the output.. but for tables where the row contains rowspan - i get table as follows - enter image description here

like image 607
Divya Jose Avatar asked Feb 27 '15 11:02

Divya Jose


People also ask

Can we use Rowspan in TD?

Usage: It can be used with <td> and <th> element in an HTML Table. Attribute Values: It contains a value i.e number Which specify the number of rows that a table cell should span. <td>: The rowspan attribute when used with <td> tag determines the number of standard cells it should span.

What is TD Rowspan?

Definition and Usage The rowspan attribute specifies the number of rows a cell should span.

Can we use Rowspan in th?

The HTML <th> rowspan Attribute is used to specify how many numbers of header row cell will span. Attribute Value: number: It contains the numeric value which specifies the number of rows the header cell should span.

How do I merge Rowspan and Colspan?

You can use rowspan="n" on a td element to make it span n rows, and colspan="m" on a td element to make it span m columns. Looks like your first td needs a rowspan="2" and the next td needs a colspan="4" . Save this answer.


3 Answers

None of the parsers found across stackoverflow or across the web worked for me - they all parsed my tables from Wikipedia incorrectly. So here you go, a parser that actually works and is simple. Cheers.

Define the parser functions:

def pre_process_table(table):
    """
    INPUT:
        1. table - a bs4 element that contains the desired table: ie <table> ... </table>
    OUTPUT:
        a tuple of: 
            1. rows - a list of table rows ie: list of <tr>...</tr> elements
            2. num_rows - number of rows in the table
            3. num_cols - number of columns in the table
    Options:
        include_td_head_count - whether to use only th or th and td to count number of columns (default: False)
    """
    rows = [x for x in table.find_all('tr')]

    num_rows = len(rows)

    # get an initial column count. Most often, this will be accurate
    num_cols = max([len(x.find_all(['th','td'])) for x in rows])

    # sometimes, the tables also contain multi-colspan headers. This accounts for that:
    header_rows_set = [x.find_all(['th', 'td']) for x in rows if len(x.find_all(['th', 'td']))>num_cols/2]

    num_cols_set = []

    for header_rows in header_rows_set:
        num_cols = 0
        for cell in header_rows:
            row_span, col_span = get_spans(cell)
            num_cols+=len([cell.getText()]*col_span)

        num_cols_set.append(num_cols)

    num_cols = max(num_cols_set)

    return (rows, num_rows, num_cols)


def get_spans(cell):
        """
        INPUT:
            1. cell - a <td>...</td> or <th>...</th> element that contains a table cell entry
        OUTPUT:
            1. a tuple with the cell's row and col spans
        """
        if cell.has_attr('rowspan'):
            rep_row = int(cell.attrs['rowspan'])
        else: # ~cell.has_attr('rowspan'):
            rep_row = 1
        if cell.has_attr('colspan'):
            rep_col = int(cell.attrs['colspan'])
        else: # ~cell.has_attr('colspan'):
            rep_col = 1 

        return (rep_row, rep_col)

def process_rows(rows, num_rows, num_cols):
    """
    INPUT:
        1. rows - a list of table rows ie <tr>...</tr> elements
    OUTPUT:
        1. data - a Pandas dataframe with the html data in it
    """
    data = pd.DataFrame(np.ones((num_rows, num_cols))*np.nan)
    for i, row in enumerate(rows):
        try:
            col_stat = data.iloc[i,:][data.iloc[i,:].isnull()].index[0]
        except IndexError:
            print(i, row)

        for j, cell in enumerate(row.find_all(['td', 'th'])):
            rep_row, rep_col = get_spans(cell)

            #print("cols {0} to {1} with rep_col={2}".format(col_stat, col_stat+rep_col, rep_col))
            #print("\trows {0} to {1} with rep_row={2}".format(i, i+rep_row, rep_row))

            #find first non-na col and fill that one
            while any(data.iloc[i,col_stat:col_stat+rep_col].notnull()):
                col_stat+=1

            data.iloc[i:i+rep_row,col_stat:col_stat+rep_col] = cell.getText()
            if col_stat<data.shape[1]-1:
                col_stat+=rep_col

    return data

def main(table):
    rows, num_rows, num_cols = pre_process_table(table)
    df = process_rows(rows, num_rows, num_cols)
    return(df)

Here's an example of how one would use the above code on this Wisconsin data. Suppose it's already in a bs4 soup then...

## Find tables on the page and locate the desired one:
tables = soup.findAll("table", class_='wikitable')

## I want table 3 or the one that contains years 2000-2018
table = tables[3]

## run the above functions to extract the data
rows, num_rows, num_cols = pre_process_table(table)
df = process_rows(rows, num_rows, num_cols)

My parser above will accurately parse tables such as the ones here, while all others fail to recreate the tables at numerous points.

In case of simple cases - simpler solution

There may be a simpler solution to the above issue if it's a pretty well-formatted table with rowspan attributes. Pandas has a fairly robust read_html function that can parse the provided html tables and seems to handle rowspan fairly well(couldn't parse the Wisconsin stuff). fillna(method='ffill') can then populate the unpopulated rows. Note that this does not necessarily work across column spaces. Also note that cleanup will be necessary after.

Consider the html code:

    s = """<table width="100%" border="1">
    <tr>
        <td rowspan="1">one</td>
        <td rowspan="2">two</td>
        <td rowspan="3">three</td>
    </tr>
    <tr><td>"4"</td></tr>
    <tr>
        <td>"55"</td>
        <td>"99"</td>
    </tr>
    </table>
    """

In order to process it into the requested output, just do:

In [16]: df = pd.read_html(s)[0]

In [29]: df
Out[29]:
      0     1      2
0   one   two  three
1   "4"   NaN    NaN
2  "55"  "99"    NaN

Then to fill the NAs,

In [30]: df.fillna(method='ffill')
Out[30]:
      0     1      2
0   one   two  three
1   "4"   two  three
2  "55"  "99"  three
like image 151
Gene Burinsky Avatar answered Sep 17 '22 14:09

Gene Burinsky


pandas >= 0.24.0 understands colspan and rowspan attributes, as documented in the release notes. To extract the wikipage table that were giving you issues previously, the following works.

import pandas as pd


# Extract all tables from the wikipage
dfs = pd.read_html("http://en.wikipedia.org/wiki/List_of_England_Test_cricket_records")
# The table referenced above is the 7th on the wikipage
df = dfs[6]
# The last row is just the date of the last update
df = df.iloc[:-1]

Out:

   Rank  Victories    Opposition                                 Most recent venue              Date
0     1          6  South Africa                           Lord's, London, England      21 June 1951
1    =2          4         India                   Wankhede Stadium, Mumbai, India  23 November 2012
2    =2          4   West Indies                           Lord's, London, England        6 May 2009
3     4          3     Australia          Sydney Cricket Ground, Sydney, Australia   2 December 1932
4     5          2      Pakistan                 Trent Bridge, Nottingham, England    10 August 1967
5     6          1     Sri Lanka  Old Trafford Cricket Ground, Manchester, England      13 June 2002
like image 33
joelostblom Avatar answered Sep 18 '22 14:09

joelostblom


The problem due to following case , as you know,

html content:

<tr>
     <td rowspan="2">2=</td>
     <td>West Indies</td>
     <td>4</td>
     <td>Lord's</td>
     <td>2009</td>
</tr>
<tr>
     <td style="text-align:left;">India</td>
     <td>4</td>
     <td>Mumbai</td>
      <td>2012</td>
</tr>

so when td have rowspan attribute then consider that same td vaulue is repeated for next tr at same level and the value of rowspan means for next number of tr tags.

  1. Get all such rowspan information and save in variable. Save sequence number of tr tag , sequence number of td tag , value of rowspan i.e. how many tr tags have same td, the text value of td.
  2. Update result of all tr according to above method.

Note:: checked only given test case. Need to check some more test case.

code:

from bs4 import BeautifulSoup
import urllib2
from lxml.html import fromstring 
import re
import csv
import pandas as pd


wiki = "http://en.wikipedia.org/wiki/List_of_England_Test_cricket_records"
header = {'User-Agent': 'Mozilla/5.0'} #Needed to prevent 403 error on Wikipedia
req = urllib2.Request(wiki,headers=header)
page = urllib2.urlopen(req)

soup = BeautifulSoup(page)

table = soup.find_all('table')[6]

tmp = table.find_all('tr')

first = tmp[0]
allRows = tmp[1:-1]
#table.find_all('tr')[1:-1]


headers = [header.get_text() for header in first.find_all('th')]

results = [[data.get_text() for data in row.find_all('td')] for row in allRows]

#<td rowspan="2">2=</td>
# list of tuple (Level of tr, Level of td, total Count, Text Value)
#e.g.
#[(1, 0, 2, u'2=')]
# (<tr> is 1 , td sequence in tr is 0, reapted 2 times , value is 2=)
rowspan = []

for no, tr in enumerate(allRows):
    tmp = []
    for td_no, data in enumerate(tr.find_all('td')):
        print  data.has_key("rowspan")
        if data.has_key("rowspan"):
            rowspan.append((no, td_no, int(data["rowspan"]), data.get_text()))


if rowspan:
    for i in rowspan:
        # tr value of rowspan in present in 1th place in results
        for j in xrange(1, i[2]):
            #- Add value in next tr.
            results[i[0]+j].insert(i[1], i[3])


df = pd.DataFrame(data=results, columns=headers)
print df

output:

  Rank       Opponent No. wins Most recent venue Season
0    1   South Africa        6            Lord's   1951
1   2=    West Indies        4            Lord's   2009
2   2=          India        4            Mumbai   2012
3    4      Australia        3            Sydney   1932
4    5       Pakistan        2      Trent Bridge   1967
5    6      Sri Lanka        1      Old Trafford   2002

working to table 10 also

  Rank Hundreds            Player Matches Innings Average
0    1       25     Alastair Cook     107     191   45.61
1    2       23   Kevin Pietersen     104     181   47.28
2    3       22     Colin Cowdrey     114     188   44.07
3    3       22     Wally Hammond      85     140   58.46
4    3       22  Geoffrey Boycott     108     193   47.72
5    6       21    Andrew Strauss     100     178   40.91
6    6       21          Ian Bell     103     178   45.30
7   8=       20    Ken Barrington      82     131   58.67
8   8=       20      Graham Gooch     118     215   42.58
9   10       19        Len Hutton      79     138   56.67
like image 42
Vivek Sable Avatar answered Sep 19 '22 14:09

Vivek Sable