I recently heard of blind signatures. I saw the wikipedia article on how they work but don't feel like implementing it. What libraries (preferably compatible with linux and windows) may I use to implement blind signatures and verifying the file is signed?
I tried looking at openssl man pages but I don't think it supports blind signatures http://www.openssl.org/docs/apps/dgst.html
I can implement my app in either C++ or .NET and have no issues spawning process and parsing their outputs however a lib would be preferred over software.
I can implement my app in either C++ or .NET ... What lib or software to sign and verify blindly?
Here's a Crypto++ based answer. Crypto++ is a class library of cryptographic schemes written by Wei Dai. The example was taken from Raw RSA | Blind Signatures on the wiki.
Jack Lloyd's Botan, which is a C++11 crypto and TLS library, may have native blind signature support.
Crypto++ lacks blind signature classes. The method below follows the basic algorithm as detailed at Blind Signatures. However, it differs from Wikipedia by applying the s(s'(x)) = x
cross-check. The cross-check was present in Chaum's original paper, but it is missing from the wiki article. A second difference from Chaum's paper and wikipedia is, the code below uses H(m)
rather than m
. That's due to Rabin in 1979.
You may want to apply a padding function first per Usability of padding scheme in blinded RSA signature? or RSA blind signatures in practice. Also see Is there a standard padding/format for RSA Blind Signatures?
#include "cryptlib.h"
#include "integer.h"
#include "nbtheory.h"
#include "osrng.h"
#include "rsa.h"
#include "sha.h"
using namespace CryptoPP;
#include <iostream>
#include <stdexcept>
using std::cout;
using std::endl;
using std::runtime_error;
int main(int argc, char* argv[])
{
// Bob artificially small key pair
AutoSeededRandomPool prng;
RSA::PrivateKey privKey;
privKey.GenerateRandomWithKeySize(prng, 64);
RSA::PublicKey pubKey(privKey);
// Convenience
const Integer& n = pubKey.GetModulus();
const Integer& e = pubKey.GetPublicExponent();
const Integer& d = privKey.GetPrivateExponent();
// Print params
cout << "Pub mod: " << std::hex << pubKey.GetModulus() << endl;
cout << "Pub exp: " << std::hex << e << endl;
cout << "Priv mod: " << std::hex << privKey.GetModulus() << endl;
cout << "Priv exp: " << std::hex << d << endl;
// For sizing the hashed message buffer. This should be SHA256 size.
const size_t SIG_SIZE = UnsignedMin(SHA256::BLOCKSIZE, n.ByteCount());
// Scratch
SecByteBlock buff1, buff2, buff3;
// Alice original message to be signed by Bob
SecByteBlock orig((const byte*)"secret", 6);
Integer m(orig.data(), orig.size());
cout << "Message: " << std::hex << m << endl;
// Hash message per Rabin (1979)
buff1.resize(SIG_SIZE);
SHA256 hash1;
hash1.CalculateTruncatedDigest(buff1, buff1.size(), orig, orig.size());
// H(m) as Integer
Integer hm(buff1.data(), buff1.size());
cout << "H(m): " << std::hex << hm << endl;
// Alice blinding
Integer r;
do {
r.Randomize(prng, Integer::One(), n - Integer::One());
} while (!RelativelyPrime(r, n));
// Blinding factor
Integer b = a_exp_b_mod_c(r, e, n);
cout << "Random: " << std::hex << b << endl;
// Alice blinded message
Integer mm = a_times_b_mod_c(hm, b, n);
cout << "Blind msg: " << std::hex << mm << endl;
// Bob sign
Integer ss = privKey.CalculateInverse(prng, mm);
cout << "Blind sign: " << ss << endl;
// Alice checks s(s'(x)) = x. This is from Chaum's paper
Integer c = pubKey.ApplyFunction(ss);
cout << "Check sign: " << c << endl;
if (c != mm)
throw runtime_error("Alice cross-check failed");
// Alice remove blinding
Integer s = a_times_b_mod_c(ss, r.InverseMod(n), n);
cout << "Unblind sign: " << s << endl;
// Eve verifies
Integer v = pubKey.ApplyFunction(s);
cout << "Verify: " << std::hex << v << endl;
// Convert to a string
size_t req = v.MinEncodedSize();
buff2.resize(req);
v.Encode(&buff2[0], buff2.size());
// Hash message per Rabin (1979)
buff3.resize(SIG_SIZE);
SHA256 hash2;
hash2.CalculateTruncatedDigest(buff3, buff3.size(), orig, orig.size());
// Constant time compare
bool equal = buff2.size() == buff3.size() && VerifyBufsEqual(
buff2.data(), buff3.data(), buff3.size());
if (!equal)
throw runtime_error("Eve verified failed");
cout << "Verified signature" << endl;
return 0;
}
Here is the result of building and running the program:
$ g++ blind.cxx ./libcryptopp.a -o blind.exe
$ ./blind.exe
Pub mod: bbf62585f8486acbh
Pub exp: 11h
Priv mod: bbf62585f8486acbh
Priv exp: 31c1280c6bb08635h
Message: 736563726574h
H(m): 2bb80d537b1da3e3h
Random: 7db0ecdb0a09fad5h
Blinded msg: a8bf62a25b7b4b53h
Blind sign: 2646ab6b9d5b48dfh
Check sign: a8bf62a25b7b4b53h
Unblind sign: 418d211b9cbb2d00h
Verify: 2bb80d537b1da3e3h
Verified signature
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With