In the (not too) early days, all that existed was ASCII. This was okay, as all that would ever be needed were a few control characters, punctuation, numbers and letters like the ones in this sentence. Unfortunately, today's strange world of global intercommunication and social media was not foreseen, and it is not too unusual to see English, العربية, 汉语, עִבְרִית, ελληνικά, and ភាសាខ្មែរ in the same document (I hope I didn't break any old browsers).
But for argument's sake, lets say Joe Average is a software developer. He insists that he will only ever need English, and as such only wants to use ASCII. This might be fine for Joe the user, but this is not fine for Joe the software developer. Approximately half the world uses non-Latin characters and using ASCII is arguably inconsiderate to these people, and on top of that, he is closing off his software to a large and growing economy.
Therefore, an encompassing character set including all languages is needed. Thus came Unicode. It assigns every character a unique number called a code point. One advantage of Unicode over other possible sets is that the first 256 code points are identical to ISO-8859-1, and hence also ASCII. In addition, the vast majority of commonly used characters are representable by only two bytes, in a region called the Basic Multilingual Plane (BMP). Now a character encoding is needed to access this character set, and as the question asks, I will concentrate on UTF-8 and UTF-16.
So how many bytes give access to what characters in these encodings?
It's worth mentioning now that characters not in the BMP include ancient scripts, mathematical symbols, musical symbols, and rarer Chinese/Japanese/Korean (CJK) characters.
If you'll be working mostly with ASCII characters, then UTF-8 is certainly more memory efficient. However, if you're working mostly with non-European scripts, using UTF-8 could be up to 1.5 times less memory efficient than UTF-16. When dealing with large amounts of text, such as large web-pages or lengthy word documents, this could impact performance.
Note: If you know how UTF-8 and UTF-16 are encoded, skip to the next section for practical applications.
1
to avoid clashing with the ASCII characters.As can be seen, UTF-8 and UTF-16 are nowhere near compatible with each other. So if you're doing I/O, make sure you know which encoding you are using! For further details on these encodings, please see the UTF FAQ.
Character and String data types: How are they encoded in the programming language? If they are raw bytes, the minute you try to output non-ASCII characters, you may run into a few problems. Also, even if the character type is based on a UTF, that doesn't mean the strings are proper UTF. They may allow byte sequences that are illegal. Generally, you'll have to use a library that supports UTF, such as ICU for C, C++ and Java. In any case, if you want to input/output something other than the default encoding, you will have to convert it first.
Recommended/default/dominant encodings: When given a choice of which UTF to use, it is usually best to follow recommended standards for the environment you are working in. For example, UTF-8 is dominant on the web, and since HTML5, it has been the recommended encoding. Conversely, both .NET and Java environments are founded on a UTF-16 character type. Confusingly (and incorrectly), references are often made to the "Unicode encoding", which usually refers to the dominant UTF encoding in a given environment.
Library support: The libraries you are using support some kind of encoding. Which one? Do they support the corner cases? Since necessity is the mother of invention, UTF-8 libraries will generally support 4-byte characters properly, since 1, 2, and even 3 byte characters can occur frequently. However, not all purported UTF-16 libraries support surrogate pairs properly since they occur very rarely.
Counting characters: There exist combining characters in Unicode. For example the code point U+006E (n), and U+0303 (a combining tilde) forms ñ, but the code point U+00F1 forms ñ. They should look identical, but a simple counting algorithm will return 2 for the first example, 1 for the latter. This isn't necessarily wrong, but may not be the desired outcome either.
Comparing for equality: A, А, and Α look the same, but they're Latin, Cyrillic, and Greek respectively. You also have cases like C and Ⅽ, one is a letter, the other a Roman numeral. In addition, we have the combining characters to consider as well. For more info see Duplicate characters in Unicode.
Surrogate pairs: These come up often enough on SO, so I'll just provide some example links:
Others?:
Unicode is a fairly complex standard. Don’t be too afraid, but be prepared for some work! [2]
Because a credible resource is always needed, but the official report is massive, I suggest reading the following:
A brief explanation:
Computers read bytes and people read characters, so we use encoding standards to map characters to bytes. ASCII was the first widely used standard, but covers only Latin (7 bits/character can represent 128 different characters). Unicode is a standard with the goal to cover all possible characters in the world (can hold up to 1,114,112 characters, meaning 21 bits/character max. Current Unicode 8.0 specifies 120,737 characters in total, and that's all).
The main difference is that an ASCII character can fit to a byte (8 bits), but most Unicode characters cannot. So encoding forms/schemes (like UTF-8 and UTF-16) are used, and the character model goes like this:
Every character holds an enumerated position from 0 to 1,114,111 (hex: 0-10FFFF) called code point.
An encoding form maps a code point to a code unit sequence. A code unit is the way you want characters to be organized in memory, 8-bit units, 16-bit units and so on. UTF-8 uses 1 to 4 units of 8 bits, and UTF-16 uses 1 or 2 units of 16 bits, to cover the entire Unicode of 21 bits max. Units use prefixes so that character boundaries can be spotted, and more units mean more prefixes that occupy bits. So, although UTF-8 uses 1 byte for the Latin script it needs 3 bytes for later scripts inside Basic Multilingual Plane, while UTF-16 uses 2 bytes for all these. And that's their main difference.
Lastly, an encoding scheme (like UTF-16BE or UTF-16LE) maps (serializes) a code unit sequence to a byte sequence.
character: π
code point: U+03C0
encoding forms (code units):
UTF-8: CF 80
UTF-16: 03C0
encoding schemes (bytes):
UTF-8: CF 80
UTF-16BE: 03 C0
UTF-16LE: C0 03
Tip: a hex digit represents 4 bits, so a two-digit hex number represents a byte
Also take a look at Plane maps in Wikipedia to get a feeling of the character set layout
This article explains all the details http://kunststube.net/encoding/
WRITING TO BUFFER
if you write to a 4 byte buffer, symbol あ
with UTF8 encoding, your binary will look like this:
00000000 11100011 10000001 10000010
if you write to a 4 byte buffer, symbol あ
with UTF16 encoding, your binary will look like this:
00000000 00000000 00110000 01000010
As you can see, depending on what language you would use in your content this will effect your memory accordingly.
e.g. For this particular symbol: あ
UTF16 encoding is more efficient since we have 2 spare bytes to use for the next symbol. But it doesn't mean that you must use UTF16 for Japan alphabet.
READING FROM BUFFER
Now if you want to read the above bytes, you have to know in what encoding it was written to and decode it back correctly.
e.g. If you decode this :
00000000 11100011 10000001 10000010
into UTF16 encoding, you will end up with 臣
not あ
Note: Encoding and Unicode are two different things. Unicode is the big (table) with each symbol mapped to a unique code point. e.g. あ
symbol (letter) has a (code point): 30 42 (hex). Encoding on the other hand, is an algorithm that converts symbols to more appropriate way, when storing to hardware.
30 42 (hex) - > UTF8 encoding - > E3 81 82 (hex), which is above result in binary.
30 42 (hex) - > UTF16 encoding - > 30 42 (hex), which is above result in binary.
Originally, Unicode was intended to have a fixed-width 16-bit encoding (UCS-2). Early adopters of Unicode, like Java and Windows NT, built their libraries around 16-bit strings.
Later, the scope of Unicode was expanded to include historical characters, which would require more than the 65,536 code points a 16-bit encoding would support. To allow the additional characters to be represented on platforms that had used UCS-2, the UTF-16 encoding was introduced. It uses "surrogate pairs" to represent characters in the supplementary planes.
Meanwhile, a lot of older software and network protocols were using 8-bit strings. UTF-8 was made so these systems could support Unicode without having to use wide characters. It's backwards-compatible with 7-bit ASCII.
Unicode is a standard which maps the characters in all languages to a particular numeric value called Code Points. The reason it does this is that it allows different encodings to be possible using the same set of code points.
UTF-8 and UTF-16 are two such encodings. They take code points as input and encodes them using some well-defined formula to produce the encoded string.
Choosing a particular encoding depends upon your requirements. Different encodings have different memory requirements and depending upon the characters that you will be dealing with, you should choose the encoding which uses the least sequences of bytes to encode those characters.
For more in-depth details about Unicode, UTF-8 and UTF-16, you can check out this article,
What every programmer should know about Unicode
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With