Lemme clarify:
What would be the fastest way to get every number with all unique digits between two numbers. For example, 10,000 and 100,000.
Some obvious ones would be 12,345 or 23,456. I'm trying to find a way to gather all of them.
for i in xrange(LOW, HIGH):
str_i = str(i)
...?
Use itertools.permutations
:
from itertools import permutations
result = [
a * 10000 + b * 1000 + c * 100 + d * 10 + e
for a, b, c, d, e in permutations(range(10), 5)
if a != 0
]
I used the fact, that:
10000
and 100000
have either 5 or 6 digits, but only 6-digit number here does not have unique digits,itertools.permutations
creates all combinations, with all orderings (so both 12345
and 54321
will appear in the result), with given length,EDIT:
Thanks for accepting my answer, but here is the data for the others, comparing mentioned results:
>>> from timeit import timeit
>>> stmt1 = '''
a = []
for i in xrange(10000, 100000):
s = str(i)
if len(set(s)) == len(s):
a.append(s)
'''
>>> stmt2 = '''
result = [
int(''.join(digits))
for digits in permutations('0123456789', 5)
if digits[0] != '0'
]
'''
>>> setup2 = 'from itertools import permutations'
>>> stmt3 = '''
result = [
x for x in xrange(10000, 100000)
if len(set(str(x))) == len(str(x))
]
'''
>>> stmt4 = '''
result = [
a * 10000 + b * 1000 + c * 100 + d * 10 + e
for a, b, c, d, e in permutations(range(10), 5)
if a != 0
]
'''
>>> setup4 = setup2
>>> timeit(stmt1, number=100)
7.955858945846558
>>> timeit(stmt2, setup2, number=100)
1.879319190979004
>>> timeit(stmt3, number=100)
8.599710941314697
>>> timeit(stmt4, setup4, number=100)
0.7493319511413574
So, to sum up:
7.96 s
,1.88 s
,8.6 s
,0.75 s
,Last solution looks around 10x faster than solutions proposed by others.
Note: My solution has some imports that I did not measure. I assumed your imports will happen once, and code will be executed multiple times. If it is not the case, please adapt the tests to your needs.
EDIT #2: I have added another solution, as operating on strings is not even necessary - it can be achieved by having permutations of real integers. I bet this can be speed up even more.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With