Is there a best value to stay on so that I win the greatest percentage of games possible? If so, what is it?
Edit: Is there an exact probability of winning that can be calculated for a given limit, independent of whatever the opponent does? (I haven't done probability & statistics since college). I'd be interested in seeing that as an answer to contrast it with my simulated results.
Edit: Fixed bugs in my algorithm, updated result table.
I've been playing a modified blackjack game with some rather annoying rule tweaks from the standard rules. I've italicized the rules that are different from the standard blackjack rules, as well as included the rules of blackjack for those not familiar.
A deck of cards consists of 52 cards, four each of the following 13 values:
2, 3, 4, 5, 6, 7, 8, 9, 10, J, Q, K, A
No other property of the cards are relevant.
A Ruby representation of this is:
CARDS = ((2..11).to_a+[10]*3)*4
I've been approaching this as follows:
Here is the algorithm implemented in Ruby:
#!/usr/bin/env ruby
class Array
def shuffle
sort_by { rand }
end
def shuffle!
self.replace shuffle
end
def score
sort.each_with_index.inject(0){|s,(c,i)|
s+c > 21 - (size - (i + 1)) && c==11 ? s+1 : s+c
}
end
end
N=(ARGV[0]||100_000).to_i
NDECKS = (ARGV[1]||1).to_i
CARDS = ((2..11).to_a+[10]*3)*4*NDECKS
CARDS.shuffle
my_limits = (12..21).to_a
opp_limits = my_limits.dup
puts " " * 55 + "opponent_limit"
printf "my_limit |"
opp_limits.each do |result|
printf "%10s", result.to_s
end
printf "%10s", "net"
puts
printf "-" * 8 + " |"
print " " + "-" * 8
opp_limits.each do |result|
print " " + "-" * 8
end
puts
win_totals = Array.new(10)
win_totals.map! { Array.new(10) }
my_limits.each do |my_limit|
printf "%8s |", my_limit
$stdout.flush
opp_limits.each do |opp_limit|
if my_limit == opp_limit # will be a tie, skip
win_totals[my_limit-12][opp_limit-12] = 0
print " --"
$stdout.flush
next
elsif win_totals[my_limit-12][opp_limit-12] # if previously calculated, print
printf "%10d", win_totals[my_limit-12][opp_limit-12]
$stdout.flush
next
end
win = 0
lose = 0
draw = 0
N.times {
cards = CARDS.dup.shuffle
my_hand = [cards.pop, cards.pop]
opp_hand = [cards.pop, cards.pop]
# hit until I hit limit
while my_hand.score < my_limit
my_hand << cards.pop
end
# hit until opponent hits limit
while opp_hand.score < opp_limit
opp_hand << cards.pop
end
my_score = my_hand.score
opp_score = opp_hand.score
my_score = 0 if my_score > 21
opp_score = 0 if opp_score > 21
if my_hand.score == opp_hand.score
draw += 1
elsif my_score > opp_score
win += 1
else
lose += 1
end
}
win_totals[my_limit-12][opp_limit-12] = win-lose
win_totals[opp_limit-12][my_limit-12] = lose-win # shortcut for the inverse
printf "%10d", win-lose
$stdout.flush
end
printf "%10d", win_totals[my_limit-12].inject(:+)
puts
end
Usage
ruby blackjack.rb [num_iterations] [num_decks]
The script defaults to 100,000 iterations and 4 decks. 100,000 takes about 5 minutes on a fast macbook pro.
opponent_limit
my_limit | 12 13 14 15 16 17 18 19 20 21 net
-------- | -------- -------- -------- -------- -------- -------- -------- -------- -------- -------- --------
12 | -- -7666 -13315 -15799 -15586 -10445 -2299 12176 30365 65631 43062
13 | 7666 -- -6962 -11015 -11350 -8925 -975 10111 27924 60037 66511
14 | 13315 6962 -- -6505 -9210 -7364 -2541 8862 23909 54596 82024
15 | 15799 11015 6505 -- -5666 -6849 -4281 4899 17798 45773 84993
16 | 15586 11350 9210 5666 -- -6149 -5207 546 11294 35196 77492
17 | 10445 8925 7364 6849 6149 -- -7790 -5317 2576 23443 52644
18 | 2299 975 2541 4281 5207 7790 -- -11848 -7123 8238 12360
19 | -12176 -10111 -8862 -4899 -546 5317 11848 -- -18848 -8413 -46690
20 | -30365 -27924 -23909 -17798 -11294 -2576 7123 18848 -- -28631 -116526
21 | -65631 -60037 -54596 -45773 -35196 -23443 -8238 8413 28631 -- -255870
This is where I struggle. I'm not quite sure how to interpret this data. At first glance it seems like always staying at 16 or 17 is the way to go, but I'm not sure if it's that easy. I think it's unlikely that an actual human opponent would stay on 12, 13, and possibly 14, so should I throw out those opponent_limit values? Also, how can I modify this to take into account the variability of a real human opponent? e.g. a real human is likely to stay on 15 just based on a "feeling" and may also hit on 18 based on a "feeling"
The goal of the blackjack basic strategy isn't to help you win at blackjack every time you play. That's impossible. Instead, it is to help you maximize your winning chances and to minimize your losses.
According to my blackjack appendix 4, the probability of an overall win in blackjack is 42.22%, a tie is 8.48%, and a loss is 49.10%. I'm going to assume you wish to ignore ties for purposes of the streak. In that case, the probability of a win, given a resolved bet, is 46.36%.
I'm suspicious of your results. For example, if the opponent aims for 19, your data says that the best way to beat him is to hit until you reach 20. This does not pass a basic smell test. Are you sure you don't have a bug? If my opponent is striving for 19 or better, my strategy would be to avoid busting at all costs: stay on anything 13 or higher (maybe even 12?). Going for 20 has to wrong -- and not just by a small margin, but by a lot.
How do I know that your data is bad? Because the blackjack game you are playing isn't unusual. It's the way a dealer plays in most casinos: the dealer hits up to a target and then stops, regardless of what the other players hold in their hands. What is that target? Stand on hard 17 and hit soft 17. When you get rid of the bugs in your script, it should confirm that the casinos know their business.
When I make the following replacements to your code:
# Replace scoring method.
def score
s = inject(0) { |sum, c| sum + c }
return s if s < 21
n_aces = find_all { |c| c == 11 }.size
while s > 21 and n_aces > 0
s -= 10
n_aces -= 1
end
return s
end
# Replace section of code determining hand outcome.
my_score = my_hand.score
opp_score = opp_hand.score
my_score = 0 if my_score > 21
opp_score = 0 if opp_score > 21
if my_score == opp_score
draw += 1
elsif my_score > opp_score
win += 1
else
lose += 1
end
The results agree with the behavior of casino dealers: 17 is the optimal target.
n=10000
opponent_limit
my_limit | 12 13 14 15 16 17 18 19 20 21 net
-------- | -------- -------- -------- -------- -------- -------- -------- -------- -------- -------- --------
12 | -- -843 -1271 -1380 -1503 -1148 -137 1234 3113 6572
13 | 843 -- -642 -1041 -1141 -770 -93 1137 2933 6324
14 | 1271 642 -- -498 -784 -662 93 1097 2977 5945
15 | 1380 1041 498 -- -454 -242 -100 898 2573 5424
16 | 1503 1141 784 454 -- -174 69 928 2146 4895
17 | 1148 770 662 242 174 -- 38 631 1920 4404
18 | 137 93 -93 100 -69 -38 -- 489 1344 3650
19 | -1234 -1137 -1097 -898 -928 -631 -489 -- 735 2560
20 | -3113 -2933 -2977 -2573 -2146 -1920 -1344 -735 -- 1443
21 | -6572 -6324 -5945 -5424 -4895 -4404 -3650 -2560 -1443 --
Some miscellaneous comments:
The current design is inflexible. With a just little refactoring, you could achieve a clean separation between the operation of the game (dealing, shuffling, keeping running stats) and player decision making. This would allow you to test various strategies against each other. Currently, your strategies are embedded in loops that are all tangled up in the game operation code. Your experimentation would be better served by a design that allowed you to create new players and set their strategy at will.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With