str()
tells you the structure of any object.
One very useful function I often use is dput(), which allows you to dump an object in the form of R code.
# Use the iris data set
R> data(iris)
# dput of a numeric vector
R> dput(iris$Petal.Length)
c(1.4, 1.4, 1.3, 1.5, 1.4, 1.7, 1.4, 1.5, 1.4, 1.5, 1.5, 1.6,
1.4, 1.1, 1.2, 1.5, 1.3, 1.4, 1.7, 1.5, 1.7, 1.5, 1, 1.7, 1.9,
1.6, 1.6, 1.5, 1.4, 1.6, 1.6, 1.5, 1.5, 1.4, 1.5, 1.2, 1.3, 1.4,
1.3, 1.5, 1.3, 1.3, 1.3, 1.6, 1.9, 1.4, 1.6, 1.4, 1.5, 1.4, 4.7,
4.5, 4.9, 4, 4.6, 4.5, 4.7, 3.3, 4.6, 3.9, 3.5, 4.2, 4, 4.7,
3.6, 4.4, 4.5, 4.1, 4.5, 3.9, 4.8, 4, 4.9, 4.7, 4.3, 4.4, 4.8,
5, 4.5, 3.5, 3.8, 3.7, 3.9, 5.1, 4.5, 4.5, 4.7, 4.4, 4.1, 4,
4.4, 4.6, 4, 3.3, 4.2, 4.2, 4.2, 4.3, 3, 4.1, 6, 5.1, 5.9, 5.6,
5.8, 6.6, 4.5, 6.3, 5.8, 6.1, 5.1, 5.3, 5.5, 5, 5.1, 5.3, 5.5,
6.7, 6.9, 5, 5.7, 4.9, 6.7, 4.9, 5.7, 6, 4.8, 4.9, 5.6, 5.8,
6.1, 6.4, 5.6, 5.1, 5.6, 6.1, 5.6, 5.5, 4.8, 5.4, 5.6, 5.1, 5.1,
5.9, 5.7, 5.2, 5, 5.2, 5.4, 5.1)
# dput of a factor levels
R> dput(levels(iris$Species))
c("setosa", "versicolor", "virginica")
It can be very useful to post easily reproducible data chunks when you ask for help, or to edit or reorder the levels of a factor.
head() and tail() to get the first and last parts of a dataframe, vector, matrix, function, etc. Especially with large data frames, this is a quick way to check that it has loaded ok.
One nice feature: Reading data uses connections which can be local files, remote files accessed via http, pipes from other programs or more.
As a simple example, consider this access for N=10 random integers between min=100 and max=200 from random.org (which supplies true random numbers based on atmospheric noise rather than a pseudo random number generator):
R> site <- "http://random.org/integers/" # base URL
R> query <- "num=10&min=100&max=200&col=2&base=10&format=plain&rnd=new"
R> txt <- paste(site, query, sep="?") # concat url and query string
R> nums <- read.table(file=txt) # and read the data
R> nums # and show it
V1 V2
1 165 143
2 107 118
3 103 132
4 191 100
5 138 185
R>
As an aside, the random package provides several convenience functions for accessing random.org.
I find I am using with()
and within()
more and more. No more $
littering my code and one doesn't need to start attaching objects to the search path. More seriously, I find with()
etc make the intention of my data analysis scripts much clearer.
> df <- data.frame(A = runif(10), B = rnorm(10))
> A <- 1:10 ## something else hanging around...
> with(df, A + B) ## I know this will use A in df!
[1] 0.04334784 -0.40444686 1.99368816 0.13871605 -1.17734837
[6] 0.42473812 2.33014226 1.61690799 1.41901860 0.8699079
with()
sets up an environment within which the R expression is evaluated. within()
does the same thing but allows you to modify the data object used to create the environment.
> df <- within(df, C <- rpois(10, lambda = 2))
> head(df)
A B C
1 0.62635571 -0.5830079 1
2 0.04810539 -0.4525522 1
3 0.39706979 1.5966184 3
4 0.95802501 -0.8193090 2
5 0.76772541 -1.9450738 2
6 0.21335006 0.2113881 4
Something I didn't realise when I first used within()
is that you have to do an assignment as part of the expression evaluated and assign the returned object (as above) to get the desired effect.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With