Okay, sorry if my problem seems a bit rough. I'll try to explain it in a figurative way, I hope this is satisfactory.
10 children.
5 boxes.
Each child chooses three boxes.
Each box is opened:
- If it contains something, all children selected this box gets 1 point
- Otherwise, nobody gets a point.
My question is about what I put in bold. Because in my code, there are lots of kids and lots of boxes.
Currently, I proceed as follows:
children = {"child_1" : 0, ... , "child_10": 0}
gp1 = ["child_3", "child_7", "child_10"] #children who selected the box 1
...
gp5 = ["child_2", "child_5", "child_8", "child_10"]
boxes = [(0,gp1), (0,gp2), (1,gp3), (1,gp4), (0,gp5)]
for box in boxes:
if box[0] == 1: #something inside
for child in box[1]:
children[child] += 1
I worry mainly about the for loop that assigns each child an extra point. Because in my final code, I have many many children, I fear that doing so would slow the program too.
Is there a more efficient way for all children of the same group may have their point faster?
Represent children as indices into arrays, not as strings:
childrenScores = [0] * 10
gp1 = [2,6,9] # children who selected box 1
...
gp5 = [1,4,7,9]
boxes = [(0,gp1), (0,gp2), (1,gp3), (1,gp4), (0,gp5)]
Then, you can store childrenScores
as a NumPy array and use advanced indexing:
childrenScores = np.zeros(10, dtype=int)
...
for box in boxes:
if box[0]:
childrenScores[box[1]] += 1 # NumPy advanced indexing
This still involves a loop somewhere, but the loop is deep inside NumPy instead, which should provide a meaningful speedup.
The only speed up that I can think of is to use numpy arrays and stream the sum operation.
children[child] += np.ones(len(children[child]))
You should benchmark the operation and see if that is too slow for your business case.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With