Given 2 arrays of integers a[]
and b[]
with the same size of n (1 <= n <= 100)
numbered from 1 to n
.
(0 <= a[i], b[i] <= 6)
You can swap any a[i]
with b[i]
.
What is the minimum number of swaps needed so that the difference of the sums of array a[]
and b[]
is minimum ?
Then print out:
Example
n = 6
a[] = { 1, 1, 4, 4, 0, 6 }
b[] = { 6, 3, 1, 1, 6, 1 }
Result
- 2 (The number of swaps)
- 5, 6 (The swapped indexes)
- 0 (The difference of sums of the arrays)
Explanation
If you swap a[5]
with b[5]
and a[6]
with b[6]
which requires 2 swaps, arrays a[]
and b[]
will become:
a[] = {1, 1, 4, 4, 6, 1}
b[] = {6, 3, 1, 1, 0, 6}
Sum of a[]
is 1 + 1 + 4 + 4 + 6 + 1 = 17
Sum of b[]
is 6 + 3 + 1 + 1 + 0 + 6 = 17
So the difference of the two sums is 0.
Here's an iterative method that saves the differences so far and updates the smallest list of indexes needed to swap to achieve them.
JavaScript code:
function update(obj, d, arr){
if (!obj[d] || obj[d].length > arr.length)
obj[d] = arr;
}
function f(A, B){
let diffs = {0: []};
for (let i=0; i<A.length; i++){
const newDiffs = {};
for (d in diffs){
// Swap
let d1 = Number(d) + B[i] - A[i];
if (diffs.hasOwnProperty(d1) && diffs[d1].length < diffs[d].length + 1)
update(newDiffs, d1, diffs[d1]);
else
update(newDiffs, d1, diffs[d].concat(i+1));
d1 = Number(d) + A[i] - B[i];
if (diffs.hasOwnProperty(d1) && diffs[d1].length < diffs[d].length)
update(newDiffs, d1, diffs[d1]);
else
update(newDiffs, d1, diffs[d]);
}
diffs = newDiffs;
}
console.log(JSON.stringify(diffs) + '\n\n');
let best = Infinity;
let idxs;
for (let d in diffs){
const _d = Math.abs(Number(d));
if (_d < best){
best = _d;
idxs = diffs[d];
}
}
return [best, idxs];
};
var A = [1, 1, 4, 4, 0, 6];
var B = [6, 3, 1, 1, 6, 1];
console.log(JSON.stringify(f(A, B)));
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With