For 1 <= N <= 1000000000
, I need to compute 2N mod 1000000007
, and it must be really fast!
My current approach is:
ull power_of_2_mod(ull n) {
ull result = 1;
if (n <= 63) {
result <<= n;
result = result % 1000000007;
}
else {
ull one = 1;
one <<= 63;
while (n > 63) {
result = ((result % 1000000007) * (one % 1000000007)) % 1000000007;
n -= 63;
}
for (int i = 1; i <= n; ++i) {
result = (result * 2) % 1000000007;
}
}
return result;
}
but it doesn't seem to be fast enough. Any idea?
This will be faster (code in C):
typedef unsigned long long uint64;
uint64 PowMod(uint64 x, uint64 e, uint64 mod)
{
uint64 res;
if (e == 0)
{
res = 1;
}
else if (e == 1)
{
res = x;
}
else
{
res = PowMod(x, e / 2, mod);
res = res * res % mod;
if (e % 2)
res = res * x % mod;
}
return res;
}
This method doesn't use recursion with O(log(n)) complexity. Check this out.
#define ull unsigned long long
#define MODULO 1000000007
ull PowMod(ull n)
{
ull ret = 1;
ull a = 2;
while (n > 0) {
if (n & 1) ret = ret * a % MODULO;
a = a * a % MODULO;
n >>= 1;
}
return ret;
}
And this is pseudo from Wikipedia (see Right-to-left binary method section)
function modular_pow(base, exponent, modulus)
Assert :: (modulus - 1) * (base mod modulus) does not overflow base
result := 1
base := base mod modulus
while exponent > 0
if (exponent mod 2 == 1):
result := (result * base) mod modulus
exponent := exponent >> 1
base := (base * base) mod modulus
return result
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With