I am trying to write a function to determine whether two equal-size bitmaps are identical or not. The function I have right now simply compares a pixel at a time in each bitmap, returning false at the first non-equal pixel.
While this works, and works well for small bitmaps, in production I'm going to be using this in a tight loop and on larger images, so I need a better way. Does anyone have any recommendations?
The language I'm using is C# by the way - and yes, I am already using the .LockBits method. =)
Edit: I've coded up implementations of some of the suggestions given, and here are the benchmarks. The setup: two identical (worst-case) bitmaps, 100x100 in size, with 10,000 iterations each. Here are the results:
CompareByInts (Marc Gravell) : 1107ms
CompareByMD5 (Skilldrick) : 4222ms
CompareByMask (GrayWizardX) : 949ms
In CompareByInts and CompareByMask I'm using pointers to access the memory directly; in the MD5 method I'm using Marshal.Copy to retrieve a byte array and pass that as an argument to MD5.ComputeHash. CompareByMask is only slightly faster, but given the context I think any improvement is useful.
Thanks everyone. =)
Edit 2: Forgot to turn optimizations on - doing that gives GrayWizardX's answer even more of a boost:
CompareByInts (Marc Gravell) : 944ms
CompareByMD5 (Skilldrick) : 4275ms
CompareByMask (GrayWizardX) : 630ms
CompareByMemCmp (Erik) : 105ms
Interesting that the MD5 method didn't improve at all.
Edit 3: Posted my answer (MemCmp) which blew the other methods out of the water. o.O
Edit 8-31-12: per Joey's comment below, be mindful of the format of the bitmaps you compare. They may contain padding on the strides that render the bitmaps unequal, despite being equivalent pixel-wise. See this question for more details.
Reading this answer to a question regarding comparing byte arrays has yielded a MUCH FASTER method: using P/Invoke and the memcmp API call in msvcrt. Here's the code:
[DllImport("msvcrt.dll")]
private static extern int memcmp(IntPtr b1, IntPtr b2, long count);
public static bool CompareMemCmp(Bitmap b1, Bitmap b2)
{
if ((b1 == null) != (b2 == null)) return false;
if (b1.Size != b2.Size) return false;
var bd1 = b1.LockBits(new Rectangle(new Point(0, 0), b1.Size), ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb);
var bd2 = b2.LockBits(new Rectangle(new Point(0, 0), b2.Size), ImageLockMode.ReadOnly, PixelFormat.Format32bppArgb);
try
{
IntPtr bd1scan0 = bd1.Scan0;
IntPtr bd2scan0 = bd2.Scan0;
int stride = bd1.Stride;
int len = stride * b1.Height;
return memcmp(bd1scan0, bd2scan0, len) == 0;
}
finally
{
b1.UnlockBits(bd1);
b2.UnlockBits(bd2);
}
}
If you are trying to determine if they are 100% equal, you can invert one and add it to the other if its zero they are identical. Extending this using unsafe code, take 64 bits at a time as a long and do the math that way, any differences can cause an immediate fail.
If the images are not 100% identical (comparing png to jpeg), or if you are not looking for a 100% match then you have some more work ahead of you.
Good luck.
Well, you're using .LockBits
, so presumably you're using unsafe code. Rather than treating each row origin (Scan0 + y * Stride
) as a byte*
, consider treating it as an int*
; int
arithmetic is pretty quick, and you only have to do 1/4 as much work. And for images in ARGB you might still be talking in pixels, making the math simple.
Could you take a hash of each and compare? It would be slightly probabilistic, but practically not.
Thanks to Ram, here's a sample implementation of this technique.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With