I know the so-called textbook definition of unit tests and integration tests. What I am curious about is when it is time to write unit tests... I will write them to cover as many sets of classes as possible.
For example, if I have a Word
class, I will write some unit tests for the Word
class. Then, I begin writing my Sentence
class, and when it needs to interact with the Word
class, I will often write my unit tests such that they test both Sentence
and Word
... at least in the places where they interact.
Have these tests essentially become integration tests because they now test the integration of these 2 classes, or is it just a unit test that spans 2 classes?
In general, because of this uncertain line, I will rarely actually write integration tests... or is my using the finished product to see if all the pieces work properly the actual integration tests, even though they are manual and rarely repeated beyond the scope of each individual feature?
Am I misunderstanding integration tests, or is there really just very little difference between integration and unit tests?
While unit tests always take results from a single unit, such as a function call, integration tests may aggregate results from various parts and sources. In an integration test, there is no need to mock away parts of the application. You can replace external systems, but the application works in an integrated way.
End to End: A helper robot that behaves like a user to click around the app and verify that it functions correctly. Sometimes called "functional testing" or e2e. Integration: Verify that several units work together in harmony. Unit: Verify that individual, isolated parts work as expected.
The difference is that an integration test may simply verify that you can query the database while a functional test would expect to get a specific value from the database as defined by the product requirements.
Unit testing and Functional testing are the foundation of the testing process. The main difference is between the two is: Unit testing is performed by the developer during the development cycle, and. Functional testing is performed by the tester during the level of system testing.
The key difference, to me, is that integration tests reveal if a feature is working or is broken, since they stress the code in a scenario close to reality. They invoke one or more software methods or features and test if they act as expected.
On the opposite, a Unit test testing a single method relies on the (often wrong) assumption that the rest of the software is correctly working, because it explicitly mocks every dependency.
Hence, when a unit test for a method implementing some feature is green, it does not mean the feature is working.
Say you have a method somewhere like this:
public SomeResults DoSomething(someInput) { var someResult = [Do your job with someInput]; Log.TrackTheFactYouDidYourJob(); return someResults; }
DoSomething
is very important to your customer: it's a feature, the only thing that matters. That's why you usually write a Cucumber specification asserting it: you wish to verify and communicate the feature is working or not.
Feature: To be able to do something In order to do something As someone I want the system to do this thing Scenario: A sample one Given this situation When I do something Then what I get is what I was expecting for
No doubt: if the test passes, you can assert you are delivering a working feature. This is what you can call Business Value.
If you want to write a unit test for DoSomething
you should pretend (using some mocks) that the rest of the classes and methods are working (that is: that, all dependencies the method is using are correctly working) and assert your method is working.
In practice, you do something like:
public SomeResults DoSomething(someInput) { var someResult = [Do your job with someInput]; FakeAlwaysWorkingLog.TrackTheFactYouDidYourJob(); // Using a mock Log return someResults; }
You can do this with Dependency Injection, or some Factory Method or any Mock Framework or just extending the class under test.
Suppose there's a bug in Log.DoSomething()
. Fortunately, the Gherkin spec will find it and your end-to-end tests will fail.
The feature won't work, because Log
is broken, not because [Do your job with someInput]
is not doing its job. And, by the way, [Do your job with someInput]
is the sole responsibility for that method.
Also, suppose Log
is used in 100 other features, in 100 other methods of 100 other classes.
Yep, 100 features will fail. But, fortunately, 100 end-to-end tests are failing as well and revealing the problem. And, yes: they are telling the truth.
It's very useful information: I know I have a broken product. It's also very confusing information: it tells me nothing about where the problem is. It communicates me the symptom, not the root cause.
Yet, DoSomething
's unit test is green, because it's using a fake Log
, built to never break. And, yes: it's clearly lying. It's communicating a broken feature is working. How can it be useful?
(If DoSomething()
's unit test fails, be sure: [Do your job with someInput]
has some bugs.)
Suppose this is a system with a broken class:
A single bug will break several features, and several integration tests will fail.
On the other hand, the same bug will break just one unit test.
Now, compare the two scenarios.
The same bug will break just one unit test.
Log
are redLog
is redActually, unit tests for all modules using a broken feature are green because, by using mocks, they removed dependencies. In other words, they run in an ideal, completely fictional world. And this is the only way to isolate bugs and seek them. Unit testing means mocking. If you aren't mocking, you aren't unit testing.
Integration tests tell what's not working. But they are of no use in guessing where the problem could be.
Unit tests are the sole tests that tell you where exactly the bug is. To draw this information, they must run the method in a mocked environment, where all other dependencies are supposed to correctly work.
That's why I think that your sentence "Or is it just a unit test that spans 2 classes" is somehow displaced. A unit test should never span 2 classes.
This reply is basically a summary of what I wrote here: Unit tests lie, that's why I love them.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With