I am learning GCP, and came across Kuberflow and Google Cloud Composer.
From what I have understood, it seems that both are used to orchestrate workflows, empowering the user to schedule and monitor pipelines in the GCP.
The only difference that I could figure out is that Kuberflow deploys and monitors Machine Learning models. Am I correct? In that case, since Machine Learning models are also objects, can't we orchestrate them using Cloud Composer? How does Kubeflow help in any way, better than Cloud Composer when it comes to managing Machine Learning models??
Thanks
Kubeflow and Kubeflow Pipelines
Kubeflow is not exactly the same as Kubeflow Pipelines. The Kubeflow project mostly develops Kubernetes operators for distributed ML training (TFJob, PyTorchJob). On the other hand the Pipelines project develops a system for authoring and running pipelines on Kubernetes. KFP also has some sample components, by the main product is the pipeline authoring SDK and the pipeline execution engine
Kubeflow Pipelines vs. Cloud Composer
The projects are pretty similar, but there are differences:
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With