I trained Cifar10 example model from TensorFlow's repository with batch_size 128 and it worked fine. Then I froze graph and managed to run it with C++ just like they do it in their C++ label image example.
The only problem was that I had to artificially generate tensor of shape [128, image_height, image_width, channels] to classify single image with C++ because saved model expects input of 128 samples in a batch since that is number of samples that comes from queue.
I tried training Cifar10 example with batch_size = 1 and then I managed to classify examples one by one when I run model with C++, but that doesn't seem like a great solution. I also tried manually changing tensor shapes in saved graph file but it didn't work.
My question is what is the best way to train model with fixed batch size (like 32, 64, 128 etc.) and then save model so that it can be used with batch size of arbitrary length? If that's not possible, then how to save model to be able to classify samples one by one.
It sounds like the problem is that TensorFlow is "baking in" the batch size to other tensors in the graph (e.g. if the graph contains tf.shape(t)
for some tensor t
whose shape depends on the batch size, the batch size might be stored in the graph as a constant). The solution is to change your program slightly so that tf.train.batch()
returns tensors with a variable batch size.
The tf.train.batch()
method accepts a tf.Tensor
for the batch_size
argument. Perhaps the simplest way to modify your program for variable-sized batches would be to define a placeholder for the batch size:
# Define a scalar tensor for the batch size, so that you can alter it at
# Session.run()-time.
batch_size_tensor = tf.placeholder(tf.int32, shape=[])
input_tensors = tf.train.batch(..., batch_size=batch_size_tensor, ...)
This would prevent the batch size from being baked into your GraphDef, so you should be able to feed values of any batch size in C++. However, this modification would require you to feed a value for the batch size on every step, which is slightly tedious.
Assuming that you always want to train with batch size 128, but retain the flexibility to change the batch size later, you could use a tf.placeholder_with_default()
to specify that the batch size should be 128 when you don't feed an alternative value:
# Define a scalar tensor for the batch size, so that you can alter it at
# Session.run()-time.
batch_size_tensor = tf.placeholder_with_default(128, shape=[])
input_tensors = tf.train.batch(..., batch_size=batch_size_tensor, ...)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With