I have a square image, for example this one:

and I would like to calculate the 1D average of the image for each radius from the position (0,0). I have written some code to do so, but first of all it very slow even for small images, secondly I see that there are also some problems with the idea behind it. Code is here:
import matplotlib.pyplot as plt
import numpy as np
import collections
from skimage import data
image = data.coins()
image = image[:,0:303]
print(image.shape)
projection = {}
total_count = {}
for x_i,x in enumerate(image):
for y_i,y in enumerate(x):
if round(np.sqrt(x_i**2+y_i**2),1) not in projection:
projection[round(np.sqrt(x_i**2+y_i**2),1)] = y
total_count[round(np.sqrt(x_i**2+y_i**2),1)] = 1
elif np.sqrt(round(np.sqrt(x_i**2+y_i**2),1)) in projection:
projection[round(np.sqrt(x_i**2+y_i**2),1)] += y
total_count[round(np.sqrt(x_i ** 2 + y_i ** 2), 1)] += 1
od = collections.OrderedDict(sorted(projection.items()))
x, y = [],[]
for k, v in od.items():
x.append(k)
y.append(v/total_count[k])
plt.plot(x,y)
plt.xlabel('Radius from (0,0)')
plt.ylabel('Averaged pixel value')
plt.show()
The result of the code looks like this:

Has anyone have some clue how to improve my the script? I also don't know why in some cases there are some spikes which have very small average value. I would really appreciate some hints. Thanks!
You may filter the image by the radius by creating a matrix of radii R
and calculating
image[(R >= r-.5) & (R < r+.5)].mean()
where r is the radius you are interested in.

import numpy as np
import matplotlib.pyplot as plt
from skimage import data
# get some image
image = data.coins()
image = image[:,0:303]
# create array of radii
x,y = np.meshgrid(np.arange(image.shape[1]),np.arange(image.shape[0]))
R = np.sqrt(x**2+y**2)
# calculate the mean
f = lambda r : image[(R >= r-.5) & (R < r+.5)].mean()
r = np.linspace(1,302,num=302)
mean = np.vectorize(f)(r)
# plot it
fig,ax=plt.subplots()
ax.plot(r,mean)
plt.show()

I have found also another, very elegant way of doing radial average posted by @Bi Rico here:
def radial_profile(data, center):
y, x = np.indices((data.shape))
r = np.sqrt((x - center[0])**2 + (y - center[1])**2)
r = r.astype(np.int)
tbin = np.bincount(r.ravel(), data.ravel())
nr = np.bincount(r.ravel())
radialprofile = tbin / nr
return radialprofile
It works quite well and what is most important is much more efficient than previously posted suggestions.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With