Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

What is the best Battleship AI?

I second the motion to do a lot more games per match. Doing 50 games is just flipping a coin. I needed to do 1000 games to get any reasonable distinction between test algorithms.

Download Dreadnought 1.2.

Strategies:

  • keep track of all possible positions for ships that have >0 hits. The list never gets bigger than ~30K so it can be kept exactly, unlike the list of all possible positions for all ships (which is very large).

  • The GetShot algorithm has two parts, one which generates random shots and the other which tries to finish sinking an already hit ship. We do random shots if there is a possible position (from the list above) in which all hit ships are sunk. Otherwise, we try to finish sinking a ship by picking a location to shoot at which eliminates the most possible positions (weighted).

  • For random shots, compute best location to shoot based on the likelihood of one of the unsunk ships overlapping the location.

  • adaptive algorithm which places ships in locations where the opponent is statistically less likely to shoot.

  • adaptive algorithm which prefers to shoot at locations where the opponent is statistically more likely to place his ships.

  • place ships mostly not touching each other.


Here is my entry! (The most naive solution possible)

"Random 1.1"

namespace Battleship
{
    using System;
    using System.Collections.ObjectModel;
    using System.Drawing;

    public class RandomOpponent : IBattleshipOpponent
    {
        public string Name { get { return "Random"; } }
        public Version Version { get { return this.version; } }

        Random rand = new Random();
        Version version = new Version(1, 1);
        Size gameSize;

        public void NewGame(Size size, TimeSpan timeSpan)
        {
            this.gameSize = size;
        }

        public void PlaceShips(ReadOnlyCollection<Ship> ships)
        {
            foreach (Ship s in ships)
            {
                s.Place(
                    new Point(
                        rand.Next(this.gameSize.Width),
                        rand.Next(this.gameSize.Height)),
                    (ShipOrientation)rand.Next(2));
            }
        }

        public Point GetShot()
        {
            return new Point(
                rand.Next(this.gameSize.Width),
                rand.Next(this.gameSize.Height));
        }

        public void NewMatch(string opponent) { }
        public void OpponentShot(Point shot) { }
        public void ShotHit(Point shot, bool sunk) { }
        public void ShotMiss(Point shot) { }
        public void GameWon() { }
        public void GameLost() { }
        public void MatchOver() { }
    }
}

Here's an opponent for people to play against:

  • http://natekohl.net/files/FarnsworthOpponent.cs

Instead of using a fixed geometry-inspired strategy, I thought it would be interesting to attempt to estimate the underlying probabilities that any particular unexplored space holds a ship.

To do this right, you'd explore all possible configurations of ships that fit your current view of the world, and then compute probabilities based on those configurations. You could think of it like exploring a tree:

an expansion of possible battleship states http://natekohl.net/media/battleship-tree.png

After considering all leaves of that tree that jive with what you know about the world (e.g. ships can't overlap, all hit squares must be ships, etc.) you can count how often ships occur at each unexplored position to estimate the likelihood that a ship is sitting there.

This can be visualized as a heat map, where hot spots are more likely to contain ships:

a heat map of probabilities for each unexplored position http://natekohl.net/media/battleship-probs.png

One thing I like about this Battleship competition is that the tree above is almost small enough to brute-force this kind of algorithm. If there are ~150 possible positions for each of the 5 ships, that's 1505 = 75 billion possibilities. And that number only gets smaller, especially if you can eliminate whole ships.

The opponent that I linked to above doesn't explore the whole tree; 75 billion is still to big to get in under a second. It does attempt to estimate these probabilities, though, with the help of a few heuristics.


Not a fully fledged answer but there seems little point cluttering the real answers with code that is common. I thus present some extensions/general classes in the spirit of open source. If you use these then please change the namespace or trying to compile everything into one dll isn't going to work.

BoardView lets you easily work with an annotated board.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Drawing;
using System.IO;

namespace Battleship.ShuggyCoUk
{
    public enum Compass
    {
        North,East,South,West
    }

    class Cell<T>
    {
        private readonly BoardView<T> view;
        public readonly int X;
        public readonly int Y;
        public T Data;
        public double Bias { get; set; }

        public Cell(BoardView<T> view, int x, int y) 
        { 
            this.view = view; this.X = x; this.Y = y; this.Bias = 1.0;  
        }

        public Point Location
        {
            get { return new Point(X, Y); }
        }

        public IEnumerable<U> FoldAll<U>(U acc, Func<Cell<T>, U, U> trip)
        {
            return new[] { Compass.North, Compass.East, Compass.South, Compass.West }
                .Select(x => FoldLine(x, acc, trip));
        }

        public U FoldLine<U>(Compass direction, U acc, Func<Cell<T>, U, U> trip)
        {
            var cell = this;
            while (true)
            {
                switch (direction)
                {
                    case Compass.North:
                        cell = cell.North; break;
                    case Compass.East:
                        cell = cell.East; break;
                    case Compass.South:
                        cell = cell.South; break;
                    case Compass.West:
                        cell = cell.West; break;
                }
                if (cell == null)
                    return acc;
                acc = trip(cell, acc);
            }
        }

        public Cell<T> North
        {
            get { return view.SafeLookup(X, Y - 1); }
        }

        public Cell<T> South
        {
            get { return view.SafeLookup(X, Y + 1); }
        }

        public Cell<T> East
        {
            get { return view.SafeLookup(X+1, Y); }
        }

        public Cell<T> West
        {
            get { return view.SafeLookup(X-1, Y); }
        }

        public IEnumerable<Cell<T>> Neighbours()
        {
            if (North != null)
                yield return North;
            if (South != null)
                yield return South;
            if (East != null)
                yield return East;
            if (West != null)
                yield return West;
        }
    }

    class BoardView<T>  : IEnumerable<Cell<T>>
    {
        public readonly Size Size;
        private readonly int Columns;
        private readonly int Rows;

        private Cell<T>[] history;

        public BoardView(Size size)
        {
            this.Size = size;
            Columns = size.Width;
            Rows = size.Height;
            this.history = new Cell<T>[Columns * Rows];
            for (int y = 0; y < Rows; y++)
            {
                for (int x = 0; x < Rows; x++)
                    history[x + y * Columns] = new Cell<T>(this, x, y);
            }
        }

        public T this[int x, int y]
        {
            get { return history[x + y * Columns].Data; }
            set { history[x + y * Columns].Data = value; }
        }

        public T this[Point p]
        {
            get { return history[SafeCalc(p.X, p.Y, true)].Data; }
            set { this.history[SafeCalc(p.X, p.Y, true)].Data = value; }
        }

        private int SafeCalc(int x, int y, bool throwIfIllegal)
        {
            if (x < 0 || y < 0 || x >= Columns || y >= Rows)
            {    if (throwIfIllegal)
                    throw new ArgumentOutOfRangeException("["+x+","+y+"]");
                 else
                    return -1;
            }
            return x + y * Columns;
        }

        public void Set(T data)
        {
            foreach (var cell in this.history)
                cell.Data = data;
        }

        public Cell<T> SafeLookup(int x, int y)
        {
            int index = SafeCalc(x, y, false);
            if (index < 0)
                return null;
            return history[index];
        }

        #region IEnumerable<Cell<T>> Members

        public IEnumerator<Cell<T>> GetEnumerator()
        {
            foreach (var cell in this.history)
                yield return cell;
        }

        System.Collections.IEnumerator System.Collections.IEnumerable.GetEnumerator()
        {
            return this.GetEnumerator();
        }

        public BoardView<U> Transform<U>(Func<T, U> transform)
        {
            var result = new BoardView<U>(new Size(Columns, Rows));
            for (int y = 0; y < Rows; y++)
            {
                for (int x = 0; x < Columns; x++)
                {
                    result[x,y] = transform(this[x, y]);
                }
            }
            return result;
        }

        public void WriteAsGrid(TextWriter w)
        {
            WriteAsGrid(w, "{0}");
        }

        public void WriteAsGrid(TextWriter w, string format)
        {
            WriteAsGrid(w, x => string.Format(format, x.Data));
        }

        public void WriteAsGrid(TextWriter w, Func<Cell<T>,string> perCell)
        {
            for (int y = 0; y < Rows; y++)
            {
                for (int x = 0; x < Columns; x++)
                {
                    if (x != 0)
                        w.Write(",");
                    w.Write(perCell(this.SafeLookup(x, y)));
                }
                w.WriteLine();
            }
        }

        #endregion
    }
}

Some extensions, some of this duplicates functionality in the main framework but should really be done by you.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Drawing;
using System.Collections.ObjectModel;

namespace Battleship.ShuggyCoUk
{
    public static class Extensions
    {        
        public static bool IsIn(this Point p, Size size)
        {
            return p.X >= 0 && p.Y >= 0 && p.X < size.Width && p.Y < size.Height;
        }

        public static bool IsLegal(this Ship ship,
            IEnumerable<Ship> ships, 
            Size board,
            Point location, 
            ShipOrientation direction)
        {
            var temp = new Ship(ship.Length);
            temp.Place(location, direction);
            if (!temp.GetAllLocations().All(p => p.IsIn(board)))
                return false;
            return ships.Where(s => s.IsPlaced).All(s => !s.ConflictsWith(temp));
        }

        public static bool IsTouching(this Point a, Point b)
        {
            return (a.X == b.X - 1 || a.X == b.X + 1) &&
                (a.Y == b.Y - 1 || a.Y == b.Y + 1);
        }

        public static bool IsTouching(this Ship ship,
            IEnumerable<Ship> ships,
            Point location,
            ShipOrientation direction)
        {
            var temp = new Ship(ship.Length);
            temp.Place(location, direction);
            var occupied = new HashSet<Point>(ships
                .Where(s => s.IsPlaced)
                .SelectMany(s => s.GetAllLocations()));
            if (temp.GetAllLocations().Any(p => occupied.Any(b => b.IsTouching(p))))
                return true;
            return false;
        }

        public static ReadOnlyCollection<Ship> MakeShips(params int[] lengths)
        {
            return new System.Collections.ObjectModel.ReadOnlyCollection<Ship>(
                lengths.Select(l => new Ship(l)).ToList());       
        }

        public static IEnumerable<T> Shuffle<T>(this IEnumerable<T> source, Rand rand)
        {
            T[] elements = source.ToArray();
            // Note i > 0 to avoid final pointless iteration
            for (int i = elements.Length - 1; i > 0; i--)
            {
                // Swap element "i" with a random earlier element it (or itself)
                int swapIndex = rand.Next(i + 1);
                T tmp = elements[i];
                elements[i] = elements[swapIndex];
                elements[swapIndex] = tmp;
            }
            // Lazily yield (avoiding aliasing issues etc)
            foreach (T element in elements)
            {
                yield return element;
            }
        }

        public static T RandomOrDefault<T>(this IEnumerable<T> things, Rand rand)
        {
            int count = things.Count();
            if (count == 0)
                return default(T);
            return things.ElementAt(rand.Next(count));
        }
    }
}

Something I end up using a lot.

enum OpponentsBoardState
{
    Unknown = 0,
    Miss,
    MustBeEmpty,        
    Hit,
}

Randomization. Secure but testable, useful for testing.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Drawing;

namespace Battleship.ShuggyCoUk
{
    public class Rand
    {
        Random r;

        public Rand()
        {
            var rand = System.Security.Cryptography.RandomNumberGenerator.Create();
            byte[] b = new byte[4];
            rand.GetBytes(b);
            r = new Random(BitConverter.ToInt32(b, 0));
        }

        public int Next(int maxValue)
        {
            return r.Next(maxValue);
        }

        public double NextDouble(double maxValue)
        {
            return r.NextDouble() * maxValue;
        }

        public T Pick<T>(IEnumerable<T> things)
        {
            return things.ElementAt(Next(things.Count()));
        }

        public T PickBias<T>(Func<T, double> bias, IEnumerable<T> things)
        {
            double d = NextDouble(things.Sum(x => bias(x)));
            foreach (var x in things)
            {
                if (d < bias(x))
                    return x;
                d -= bias(x);                
            }
            throw new InvalidOperationException("fell off the end!");
        }
    }
}

I don't have the time right now to write a full-fledged algorithm, but here's a thought: if your opponent placed ships randomly, wouldn't the placement probabilities be a simple distribution centered at (5.5,5.5)? For example, the placement possibilities for the battleship (5 units long) in the x dimension are here:

x    1 2 3 4 5  6  7 8 9 10
P(x) 2 4 6 8 10 10 8 6 4 2

The same calculations would be valid for y. The other ships would not have as steep of distributions, but your best guess is still the center. After that, the mathematical approach would be slowly radiating diagonals (perhaps with the length of the average ship, 17/5) out of the center. Ex:

...........
....x.x....
.....x.....
....x.x....
...........

Obviously some randomness would need to be added to the idea, but I think that purely mathematically that's the way to go.


Nothing that sophisticated but heres what I came up with. It beats the random opponent 99.9% of the time. Would be interested if anyone has any other little challenges like this, it was good fun.

namespace Battleship
{
    using System;
    using System.Collections.ObjectModel;
    using System.Drawing;
    using System.Collections.Generic;
    using System.Linq;
    public class AgentSmith : IBattleshipOpponent
    {        
        public string Name { get { return "Agent Smith"; } }
        public Version Version { get { return this.version; } }
        private Random rand = new Random();
        private Version version = new Version(2, 1);
        private Size gameSize;
        private enum Direction { Up, Down, Left, Right }
        private int MissCount;
        private Point?[] EndPoints = new Point?[2];
        private LinkedList<Point> HitShots = new LinkedList<Point>();
        private LinkedList<Point> Shots = new LinkedList<Point>();
        private List<Point> PatternShots = new List<Point>();
        private Direction ShotDirection = Direction.Up;
        private void NullOutTarget()
        {
            EndPoints = new Point?[2];
            MissCount = 0;
        }
        private void SetupPattern()
        {
            for (int y = 0; y < gameSize.Height; y++)
                for (int x = 0; x < gameSize.Width; x++)
                    if ((x + y) % 2 == 0) PatternShots.Add(new Point(x, y));
        }
        private bool InvalidShot(Point p)
        {
            bool InvalidShot = (Shots.Where(s => s.X == p.X && s.Y == p.Y).Any());
            if (p.X < 0 | p.Y<0) InvalidShot = true;
            if (p.X >= gameSize.Width | p.Y >= gameSize.Height) InvalidShot = true;
            return InvalidShot;
        }
        private Point FireDirectedShot(Direction? direction, Point p)
        {
            ShotDirection = (Direction)direction;
            switch (ShotDirection)
            {
                case Direction.Up: p.Y--; break;
                case Direction.Down: p.Y++; break;
                case Direction.Left: p.X--; break;
                case Direction.Right: p.X++; break;
            }
            return p;
        }
        private Point FireAroundPoint(Point p)
        {
            if (!InvalidShot(FireDirectedShot(ShotDirection,p)))
                return FireDirectedShot(ShotDirection, p);
            Point testShot = FireDirectedShot(Direction.Left, p);
            if (InvalidShot(testShot)) { testShot = FireDirectedShot(Direction.Right, p); }
            if (InvalidShot(testShot)) { testShot = FireDirectedShot(Direction.Up, p); }
            if (InvalidShot(testShot)) { testShot = FireDirectedShot(Direction.Down, p); }
            return testShot;
        }
        private Point FireRandomShot()
        {
            Point p;
            do
            {
                if (PatternShots.Count > 0)
                    PatternShots.Remove(p = PatternShots[rand.Next(PatternShots.Count)]);
                else do
                    {
                        p = FireAroundPoint(HitShots.First());
                        if (InvalidShot(p)) HitShots.RemoveFirst();
                    } while (InvalidShot(p) & HitShots.Count > 0);
            }
            while (InvalidShot(p));
            return p;
        }
        private Point FireTargettedShot()
        {
            Point p;
            do
            {
                p = FireAroundPoint(new Point(EndPoints[1].Value.X, EndPoints[1].Value.Y));
                if (InvalidShot(p) & EndPoints[1] != EndPoints[0])
                    EndPoints[1] = EndPoints[0];
                else if (InvalidShot(p)) NullOutTarget();
            } while (InvalidShot(p) & EndPoints[1] != null);
            if (InvalidShot(p)) p = FireRandomShot();
            return p;
        }
        private void ResetVars()
        {
            Shots.Clear();
            HitShots.Clear();
            PatternShots.Clear();
            MissCount = 0;
        }
        public void NewGame(Size size, TimeSpan timeSpan)
        {
            gameSize = size;
            ResetVars();
            SetupPattern();
        }
        public void PlaceShips(ReadOnlyCollection<Ship> ships)
        {
            foreach (Ship s in ships)
                s.Place(new Point(rand.Next(this.gameSize.Width), rand.Next(this.gameSize.Height)), (ShipOrientation)rand.Next(2));
        }
        public Point GetShot()
        {
            if (EndPoints[1] != null) Shots.AddLast(FireTargettedShot());
            else Shots.AddLast(FireRandomShot());
            return Shots.Last();
        }
        public void ShotHit(Point shot, bool sunk)
        {            
            HitShots.AddLast(shot);
            MissCount = 0;
            EndPoints[1] = shot;
            if (EndPoints[0] == null) EndPoints[0] = shot;
            if (sunk) NullOutTarget();
        }
        public void ShotMiss(Point shot)
        {
            if (++MissCount == 6) NullOutTarget();
        }
        public void GameWon() { }
        public void GameLost() { }
        public void NewMatch(string opponent) { }
        public void OpponentShot(Point shot) { }
        public void MatchOver() { }
    }
}

Slightly condensed to take up minimal space on here and still be readable.


Some comments about the Competition Engine:

NewGame parameters:

If IBattleshipOpponent::NewGame is intended for pre-game setup and takes a boardsize, it should also take a list of ships and their respective sizes. It makes no sense to allow for variable board-size without allowing for variable ship configurations.

Ships are sealed:

I don't see any reason why class Ship is sealed. Among other basic things, I would like Ships to have a Name, so I can output messages like ("You sunk my {0}", ship.Name);. I have other extensions in mind too, so I think Ship should be inheritable.

Time Limits:

While the time limit of 1 second makes sense for a tournament rule, it totally messes with debugging. BattleshipCompetition should have an easy setting to ignore time-violations to aid with development/debugging. I would also suggest investigating System.Diagnostics.Process::UserProcessorTime / Privileged ProcessorTime / TotalProcessorTime for a more accurate view of how much time is being used.

Sunk Ships:

The current API informs you when you've sunk an oppenent's ship:

ShotHit(Point shot, bool sunk);

but not which ship you sunk! I consider it part of the human-Battleship rules that you are required to declare "You sunk my Battleship!" (or destroyer, or sub, etc).

This is especially critical when an AI is trying to flush out ships that butt-up against each other. I'd like to request an API change to:

ShotHit(Point shot, Ship ship);

If ship is non-null, it implies that the shot was a sinking-shot, and you know which ship you sunk, and how long it was. If the shot was a non-sinking shot, then ship is null, and you have no further information.