I have a sample pandas dataframe df:
col1 col2 col3 col4
0 a 1.0 2.0 3
1 b NaN NaN 6
2 c NaN 8.0 9
3 d NaN 11.0 12
4 e 13.0 14.0 15
5 f 17.0 18.0 19
6 g 21.0 22.0 23
and a second one df1:
col1 col2 col3 col4
0 a 1.0 2.0 3
4 e 13.0 14.0 15
5 f 17.0 18.0 19
6 g 21.0 22.0 23
I want to get the subset of df that does not overlaps with df1. In effect I am looking for the equivalent of the EXCEPT operand in SQL.
I used the subtract() function -- but this was clearly wrong, as the subtract performs elementwise numerical subtraction. So I got an error message:
TypeError: unsupported operand type(s) for -: 'str' and 'str'
So the question is: What is the equivalent of EXCEPT in SQL for Pandas?
I think you need set_index
of all string columns first:
df2 = df.set_index('col1').subtract(df1.set_index('col1'), axis='columns')
print (df2)
col2 col3 col4
col1
a 0.0 0.0 0.0
b NaN NaN NaN
c NaN NaN NaN
d NaN NaN NaN
e 0.0 0.0 0.0
f 0.0 0.0 0.0
g 0.0 0.0 0.0
Or:
df2 = df.set_index('col1').subtract(df1.set_index('col1'), axis='columns', fill_value=0)
print (df2)
col2 col3 col4
col1
a 0.0 0.0 0.0
b NaN NaN 6.0
c NaN 8.0 9.0
d NaN 11.0 12.0
e 0.0 0.0 0.0
f 0.0 0.0 0.0
g 0.0 0.0 0.0
EDIT by edited question:
print (df.isin(df1))
col1 col2 col3 col4
0 True True True True
1 False False False False
2 False False False False
3 False False False False
4 True True True True
5 True True True True
6 True True True True
print (df.isin(df1).all(axis=1))
0 True
1 False
2 False
3 False
4 True
5 True
6 True
dtype: bool
print (~df.isin(df1).all(axis=1))
0 False
1 True
2 True
3 True
4 False
5 False
6 False
dtype: bool
print (df[~(df.isin(df1).all(axis=1))])
col1 col2 col3 col4
1 b NaN NaN 6
2 c NaN 8.0 9
3 d NaN 11.0 12
I think a Pandas equivalent for SQL EXCEPT (MINUS) would be the following technique:
In [16]: df1
Out[16]:
a b c
0 1 a 5 # duplicates row with index: 3
1 0 x 4
2 9 Z 9 # exists in DF2, so it should NOT appear in the result set
3 1 a 5 # duplicates row with index: 3
In [17]: df2
Out[17]:
a b c
0 66 a 5.0
1 9 Z 9.0
2 0 x NaN
In [18]: (pd.merge(df1, df2, on=df1.columns.tolist(), how='outer', indicator=True)
...: .query("_merge == 'left_only'")
...: .drop('_merge', 1)
...: )
...:
Out[18]:
a b c
0 1 a 5.0
1 1 a 5.0
2 0 x 4.0
NOTE: this solution does NOT pay attention at indices
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With