Somewhere I have heard about Thread Affinity and Thread Affinity Executor. But I cannot find a proper reference for it at least in java. Can someone please explain to me what is it all about?
There are two issues. First, it’s preferable that threads have an affinity to a certain CPU (core) to make the most of their CPU-local caches. This must be handled by the operating system. This CPU affinity for threads is often also called “thread affinity”. In case of Java, there is no standard API to get control over this. But there are 3rd party libraries, as mentioned by other answers.
Second, in Java there is the observation that in typical programs objects are thread-affine, i.e. typically used by only one thread most of the time. So it’s the task of the JVM’s optimizer to ensure, that objects affine to one thread are placed close to each other in memory to fit into one CPU’s cache but place objects affine to different threads not too close to each other to avoid that they share a cache line as otherwise two CPUs/Cores have to synchronize them too often.
The ideal situation is that a CPU can work on some objects independently to another CPU working on other objects placed in an unrelated memory region.
Practical examples of optimizations considering Thread Affinity of Java objects are
With TLABs, each object starts its lifetime in a memory region dedicated to the thread which created it. According to the main hypothesis behind generational garbage collectors (“the majority of all objects will die young”), most objects will spent their entire lifetime in such a thread local buffer.
With Biased Locking, JVMs will perform locking operations with the optimistic assumption that the object will be locked by the same thread only, switching to a more expensive locking implementation only when this assumption does not hold.
To address the other end, fields which are known to be accessed by multiple threads, HotSpot/OpenJDK has an annotation, currently not part of a public API, to mark them, to direct the JVM to move these data away from the other, potentially unshared data.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With