I have just built my first model using Keras and this is the output. It looks like the standard output you get after building any Keras artificial neural network. Even after looking in the documentation, I do not fully understand what the epoch is and what the loss is which is printed in the output.
What is epoch and loss in Keras?
(I know it's probably an extremely basic question, but I couldn't seem to locate the answer online, and if the answer is really that hard to glean from the documentation I thought others would have the same question and thus decided to post it here.)
Epoch 1/20 1213/1213 [==============================] - 0s - loss: 0.1760 Epoch 2/20 1213/1213 [==============================] - 0s - loss: 0.1840 Epoch 3/20 1213/1213 [==============================] - 0s - loss: 0.1816 Epoch 4/20 1213/1213 [==============================] - 0s - loss: 0.1915 Epoch 5/20 1213/1213 [==============================] - 0s - loss: 0.1928 Epoch 6/20 1213/1213 [==============================] - 0s - loss: 0.1964 Epoch 7/20 1213/1213 [==============================] - 0s - loss: 0.1948 Epoch 8/20 1213/1213 [==============================] - 0s - loss: 0.1971 Epoch 9/20 1213/1213 [==============================] - 0s - loss: 0.1899 Epoch 10/20 1213/1213 [==============================] - 0s - loss: 0.1957 Epoch 11/20 1213/1213 [==============================] - 0s - loss: 0.1923 Epoch 12/20 1213/1213 [==============================] - 0s - loss: 0.1910 Epoch 13/20 1213/1213 [==============================] - 0s - loss: 0.2104 Epoch 14/20 1213/1213 [==============================] - 0s - loss: 0.1976 Epoch 15/20 1213/1213 [==============================] - 0s - loss: 0.1979 Epoch 16/20 1213/1213 [==============================] - 0s - loss: 0.2036 Epoch 17/20 1213/1213 [==============================] - 0s - loss: 0.2019 Epoch 18/20 1213/1213 [==============================] - 0s - loss: 0.1978 Epoch 19/20 1213/1213 [==============================] - 0s - loss: 0.1954 Epoch 20/20 1213/1213 [==============================] - 0s - loss: 0.1949
Epoch: In terms of artificial neural networks, an epoch refers to one cycle through the full training dataset. Usually, training a neural network takes more than a few epochs. Loss: A scalar value that we attempt to minimize during our training of the model.
Epoch: an arbitrary cutoff, generally defined as "one pass over the entire dataset", used to separate training into distinct phases, which is useful for logging and periodic evaluation. When using validation_data or validation_split with the fit method of Keras models, evaluation will be run at the end of every epoch.
A loss function is one of the two arguments required for compiling a Keras model: from tensorflow import keras from tensorflow.keras import layers model = keras. Sequential() model. add(layers. Dense(64, kernel_initializer='uniform', input_shape=(10,))) model.
"loss" refers to the loss value over the training data after each epoch. This is what the optimization process is trying to minimize with the training so, the lower, the better. "accuracy" refers to the ratio between correct predictions and the total number of predictions in the training data. The higher, the better.
Just to answer the questions more specifically, here's a definition of epoch and loss:
Epoch: A full pass over all of your training data.
For example, in your view above, you have 1213 observations. So an epoch concludes when it has finished a training pass over all 1213 of your observations.
Loss: A scalar value that we attempt to minimize during our training of the model. The lower the loss, the closer our predictions are to the true labels.
This is usually Mean Squared Error (MSE) as David Maust said above, or often in Keras, Categorical Cross Entropy
What you'd expect to see from running fit on your Keras model, is a decrease in loss over n number of epochs. Your training run is rather abnormal, as your loss is actually increasing. This could be due to a learning rate that is too large, which is causing you to overshoot optima.
As jaycode mentioned, you will want to look at your model's performance on unseen data, as this is the general use case of Machine Learning.
As such, you should include a list of metrics in your compile method, which could look like:
model.compile(optimizer='rmsprop', loss='categorical_crossentropy', metrics=['accuracy'])
As well as run your model on validation during the fit method, such as:
model.fit(data, labels, validation_split=0.2)
There's a lot more to explain, but hopefully this gets you started.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With