Machine learning platform is one of the buzzwords in business, in order to boost develop ML or Deep learning.
There are a common part workflow orchestrator or workflow scheduler that help users build DAG, schedule and track experiments, jobs, and runs.
There are many machine learning platform that has workflow orchestrator, like Kubeflow pipeline, FBLearner Flow, Flyte
My question is what are the main differences between airflow and Kubeflow pipeline or other ML platform workflow orchestrator?
And airflow supports different language API and has large community, can we use airflow to build our ML workflow ?
My question is what are the main differences between airflow and Kubeflow pipeline or other ML platform workflow orchestrator?
Airflow pipelines run in the Airflow server (with the risk of bringing it down if the task is too resource intensive) while Kubeflow pipelines run in a dedicated Kubernetes pod. Also Airflow pipelines are defined as a Python script while Kubernetes task are defined as Docker containers.
And airflow supports different language API and has large community, can we use airflow to build our ML workflow ?
Yes you can, you could for example use an Airflow DAG to launch a training job in a Kubernetes pod to run a Docker container emulating Kubeflow's behaviour, what you will miss is some ML specific features from Kubeflow like model tracking or experimentation.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With