Specifically, I am talking about programming for this contest: http://www.nodewar.com/about
The contest involves you facing other teams with a swarm of spaceships in a two dimensional world. The ships are constrained by a boundary (if they exit they die), and they must continually avoid moons (who pull the ships in with their gravity). The goal is to kill the opposing queen.
I have attempted to program a few, relatively basic techniques, but I feel as though I am missing something fundamental.
For example, I implemented some of the boids behaviours (http://www.red3d.com/cwr/boids/), but they seemed to lack a... goal, so to speak.
Are there any common techniques (or, preferably, combinations of techniques) for this sort of game?
EDIT
I would just like to open this up again with a bounty since I feel like I'm still missing critical pieces of information. The following is my NodeWar code:
boundary_field = (o, position) ->
distance = (o.game.moon_field - o.lib.vec.len(o.lib.vec.diff(position, o.game.center)))
return distance
moon_field = (o, position) ->
return o.lib.vec.len(o.lib.vec.diff(position, o.moons[0].pos))
ai.step = (o) ->
torque = 0;
thrust = 0;
label = null;
fields = [boundary_field, moon_field]
# Total the potential fields and determine a target.
target = [0, 0]
score = -1000000
step = 1
square = 1
for x in [(-square + o.me.pos[0])..(square + o.me.pos[0])] by step
for y in [(-square + o.me.pos[1])..(square + o.me.pos[1])] by step
position = [x, y]
continue if o.lib.vec.len(position) > o.game.moon_field
value = (fields.map (f) -> f(o, position)).reduce (t, s) -> t + s
target = position if value > score
score = value if value > score
label = target
{ torque, thrust } = o.lib.targeting.simpleTarget(o.me, target)
return { torque, thrust, label }
I may have implemented potential fields incorrectly, however, since all the examples I could find are about discrete movements (whereas NodeWar is continuous and not exact).
The main problem being my A.I. never stays within the game area for more than 10 seconds without flying off-screen or crashing into a moon.
Variables can be considered as the most essential programming techniques. The number and their type depend on the language you are using. Repetition or Loops. «For» is the most widely spread type of repetition. Most languages apply «for» to convey the idea of counting.
In our first blog article, we explained some of the most commonly used definitions of AI. Now we will discuss some fundamental AI techniques: Heuristics, Support Vector Machines, Neural Networks, the Markov Decision Process, and Natural Language Processing. 1. Heuristics
I fact, the programming language is not important because learning to program is learning to develop algorithmic thinking. Programming techniques are almost in all aspects of our lives, starting from subconscious mind programming techniques to computer programming. So, here is a list of the most basic computer programming techniques.
Top 4 Techniques of Artificial Intelligence 1. Machine Learning 2. NLP (Natural Language Processing) 3. Automation and Robotics 4. Machine Vision
You can easily make the boids algorithm play the game of Nodewar, by just adding additional steering behaviours to your boids and/or modifying the default ones. For example, you would add a steering behaviour to avoid the moon, and a steering behaviour for enemy ships (repulsion or attraction, depending on the position between yours and the enemy ship). The weights of the attraction/repulsion forces should then be tweaked (possibly by genetic algorithms, playing different configurations against each other).
I believe this approach would give you already a relatively strong baseline player, to which you can start adding collaborative strategies etc.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With