Logo Questions Linux Laravel Mysql Ubuntu Git Menu
 

What and where are the stack and heap?

Programming language books explain that value types are created on the stack, and reference types are created on the heap, without explaining what these two things are. I haven't read a clear explanation of this. I understand what a stack is. But,

  • Where and what are they (physically in a real computer's memory)?
  • To what extent are they controlled by the OS or language run-time?
  • What is their scope?
  • What determines the size of each of them?
  • What makes one faster?
like image 385
mattshane Avatar asked Sep 17 '08 04:09

mattshane


People also ask

What is stack and heap and where?

Stack space is mainly used for storing order of method execution and local variables. Stack always stored blocks in LIFO order whereas heap memory used dynamic allocation for allocating and deallocating memory blocks. Memory allocated to the heap lives until one of the following events occurs : Program terminated.

What is stack and heap in memory?

Overview. Stack memory is the space allocated for a process where all the function calls, primitive data types (int, double, etc.) and local and reference variables of the functions are stored. On the other hand heap memory is used to store the objects that are created during the execution of a Java program.

Where is the stack located?

Stacks often are placed in the uppermost address regions of the machine. They usually grow from the highest memory location towards lower memory locations, allowing the maximum flexibility in the use of the memory between the end of program memory and the "top" of the stack.

Where is the stack in memory?

As shown above, the stack segment is near the top of memory with high address. Every time a function is called, the machine allocates some stack memory for it. When a new local variables is declared, more stack memory is allocated for that function to store the variable.


1 Answers

The stack is the memory set aside as scratch space for a thread of execution. When a function is called, a block is reserved on the top of the stack for local variables and some bookkeeping data. When that function returns, the block becomes unused and can be used the next time a function is called. The stack is always reserved in a LIFO (last in first out) order; the most recently reserved block is always the next block to be freed. This makes it really simple to keep track of the stack; freeing a block from the stack is nothing more than adjusting one pointer.

The heap is memory set aside for dynamic allocation. Unlike the stack, there's no enforced pattern to the allocation and deallocation of blocks from the heap; you can allocate a block at any time and free it at any time. This makes it much more complex to keep track of which parts of the heap are allocated or free at any given time; there are many custom heap allocators available to tune heap performance for different usage patterns.

Each thread gets a stack, while there's typically only one heap for the application (although it isn't uncommon to have multiple heaps for different types of allocation).

To answer your questions directly:

To what extent are they controlled by the OS or language runtime?

The OS allocates the stack for each system-level thread when the thread is created. Typically the OS is called by the language runtime to allocate the heap for the application.

What is their scope?

The stack is attached to a thread, so when the thread exits the stack is reclaimed. The heap is typically allocated at application startup by the runtime, and is reclaimed when the application (technically process) exits.

What determines the size of each of them?

The size of the stack is set when a thread is created. The size of the heap is set on application startup, but can grow as space is needed (the allocator requests more memory from the operating system).

What makes one faster?

The stack is faster because the access pattern makes it trivial to allocate and deallocate memory from it (a pointer/integer is simply incremented or decremented), while the heap has much more complex bookkeeping involved in an allocation or deallocation. Also, each byte in the stack tends to be reused very frequently which means it tends to be mapped to the processor's cache, making it very fast. Another performance hit for the heap is that the heap, being mostly a global resource, typically has to be multi-threading safe, i.e. each allocation and deallocation needs to be - typically - synchronized with "all" other heap accesses in the program.

A clear demonstration:
Image source: vikashazrati.wordpress.com

like image 155
Jeff Hill Avatar answered Oct 02 '22 14:10

Jeff Hill