This is kind of more generic question, isn't language-specific. More about idea and algorithm to use.
The system is as follows:
It registers small loans between groups of friends. Alice
and Bill
are going to lunch, Bill's card isn't working, so Alice pays for his meal, $10.
The next day Bill
and Charles
meet each other on a railway station, Charles has no money for ticket, so Bill
buys him one, for $5.
Later that day Alice
borrows $5 from Charles
and $1 from Bill
to buy her friend a gift.
Now, assuming they all registered that transactions in the system, it looks like this:
Alice -> Bill $10
Bill -> Alice $1
Bill -> Charles $5
Charles -> Alice $5
So, now, only thing that needs to be done is Bill
giving Alice
$4 (he gave her $1 and Charles
transferred his $5 to Alice
already) and they're at the initial state.
If we scale that to many different people, having multiple transaction, what would be the best algorithm to get as little transactions as possible?
This actually looks like a job that the double entry accounting concept could help with.
Your transactions could be structured as bookkeeping entries thus:
Alice Bill Charles Balance
Alice -> Bill $10 10 10- 0 0
Bill -> Alice $1 9 9- 0 0
Bill -> Charles $5 9 4- 5- 0
Charles -> Alice $5 4 4- 0 0
And there you have it. At each transaction, you credit one ledger account and debit another so that the balance is always zero. At at the end, you simply work out the minimal number transactions to be applied to each account to return it to zero.
For this simple case, it's a simple $4 transfer from Bill to Alice. What you need to do is to reduce at least one account (but preferably two) to zero for every transaction added. Let's say you had the more complicated:
Alice Bill Charles Balance
Alice -> Bill $10 10 10- 0 0
Bill -> Alice $1 9 9- 0 0
Bill -> Charles $5 9 4- 5- 0
Charles -> Alice $5 4 4- 0 0
Charles -> Bill $1 4 5- 1 0
Then the transactions needed would be:
Bill -> Alice $4 0 1- 1 0
Bill -> Charles $1 0 0 0 0
Unfortunately, there are some states where this simple greedy strategy does not generate the best solution (kudos to j_random_hacker
for pointing this out). One example is:
Alan Bill Chas Doug Edie Fred Bal
Bill->Alan $5 5- 5 0 0 0 0 0
Bill->Chas $20 5- 25 20- 0 0 0 0
Doug->Edie $2 5- 25 20- 2 2- 0 0
Doug->Fred $1 5- 25 20- 3 2- 1- 0
Clearly, this could be reversed in four moves (since four moves is all it took to get there) but, if you choose your first move unwisely (Edie->Bill $2)
, five is the minimum you'll get away with.
You can solve this particular problem with the following rules:
That would result in the following sequence:
Alan->Bill $5
.Chas->Bill $20
.However, that works simply because of the small number of possibilities. As the number of people rises and the group inter-relations becomes more complex, you'll most likely need an exhaustive search to find the minimum number of moves required (basically the rules 1, 2 and 3 above but expanded to handle more depth).
I think that is what will be required to give you the smallest number of transactions in all circumstances. However, it may be that that's not required for the best answer (best, in this case, meaning maximum "bang per buck"). It may be that even the basic 1/2/3 rule set will give you a good-enough answer for your purposes.
Intuitively, this sounds like an NP-complete problem (it reduces to a problem very like bin packing), however the following algorithm (a modified form of bin packing) should be pretty good (no time for a proof, sorry).
Net out everyone's positions, i.e. from your example above:
Alice = $4 Bill = $-4 Charles = $0
Sort all net creditors from highest to lowest, and all debtors from lowest to highest, then match by iterating over the lists.
At some point you might need to split a person's debts to net everything out - here it is probably best to split into the biggest chunks possible (i.e. into the bins with the most remaining space first).
This will take something like O(n log n) (again, proper proof needed).
See the Partition Problem and Bin Packing for more information (the former is a very similar problem, and if you limit yourself to fixed precision transactions, then it is equivalent - proof needed of course).
I have created an Android app which solves this problem. You can input expenses during the trip, it even recommends you "who should pay next". At the end it calculates "who should send how much to whom". My algorithm calculates minimum required number of transactions and you can setup "transaction tolerance" which can reduce transactions even further (you don't care about $1 transactions) Try it out, it's called Settle Up:
https://market.android.com/details?id=cz.destil.settleup
Description of my algorithm:
I have basic algorithm which solves the problem with n-1 transactions, but it's not optimal. It works like this: From payments, I compute balance for each member. Balance is what he paid minus what he should pay. I sort members according to balance increasingly. Then I always take the poorest and richest and transaction is made. At least one of them ends up with zero balance and is excluded from further calculations. With this, number of transactions cannot be worse than n-1. It also minimizes amount of money in transactions. But it's not optimal, because it doesn't detect subgroups which can settle up internally.
Finding subgroups which can settle up internally is hard. I solve it by generating all combinations of members and checking if sum of balances in subgroup equals zero. I start with 2-pairs, then 3-pairs ... (n-1)pairs. Implementations of combination generators are available. When I find a subgroup, I calculate transactions in the subgroup using basic algorithm described above. For every found subgroup, one transaction is spared.
The solution is optimal, but complexity increases to O(n!). This looks terrible but the trick is there will be just small number of members in reality. I have tested it on Nexus One (1 Ghz procesor) and the results are: until 10 members: <100 ms, 15 members: 1 s, 18 members: 8 s, 20 members: 55 s. So until 18 members the execution time is fine. Workaround for >15 members can be to use just the basic algorithm (it's fast and correct, but not optimal).
Source code:
Source code is available inside a report about algorithm written in Czech. Source code is at the end and it's in English:
http://www.settleup.info/files/master-thesis-david-vavra.pdf
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With