How to randomly pick up N numbers from a vector a
with weight assigned to each number?
Let's say:
a = 1:3; % possible numbers
weight = [0.3 0.1 0.2]; % corresponding weights
In this case probability to pick up 1 should be 3 times higher than to pick up 2.
Sum of all weights can be anything.
R = randsample([1 2 3], N, true, [0.3 0.1 0.2])
randsample is included in the Statistics Toolbox
Otherwise you can use some kind of roulette-wheel selection process. See this similar question (although not MATLAB specific). Here's my one-line implementation:
a = 1:3; %# possible numbers
w = [0.3 0.1 0.2]; %# corresponding weights
N = 10; %# how many numbers to generate
R = a( sum( bsxfun(@ge, rand(N,1), cumsum(w./sum(w))), 2) + 1 )
Explanation:
Consider the interval [0,1]. We assign for each element in the list (1:3
) a sub-interval of length proportionate to the weight of each element; therefore 1
get and interval of length 0.3/(0.3+0.1+0.2)
, same for the others.
Now if we generate a random number with uniform distribution over [0,1], then any number in [0,1] has an equal probability of being picked, thus the sub-intervals' lengths determine the probability of the random number falling in each interval.
This matches what I'm doing above: pick a number X~U[0,1] (more like N
numbers), then find which interval it falls into in a vectorized way..
You can check the results of the two techniques above by generating a large enough sequence N=1000
:
>> tabulate( R )
Value Count Percent
1 511 51.10%
2 160 16.00%
3 329 32.90%
which more or less match the normalized weights w./sum(w)
[0.5 0.16667 0.33333]
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With