I am using the following lines of codes to visualise the gradients of an ANN model using tensorboard
tensorboard_callback = tf.compat.v1.keras.callbacks.TensorBoard(log_dir='./Graph', histogram_freq=1, write_graph = True, write_grads =True, write_images = False)
tensorboard_callback .set_model(model)
%tensorboard --logdir ./Graph
I received a warning message saying "WARNING:tensorflow:write_grads
will be ignored in TensorFlow 2.0 for the TensorBoard
Callback."
I get the tensorboard output, but without gradients.
What could be the possible reason?
(Note: I use 2.3.0 tensorflow version)
Thank you.
Write_Grads
was not implemented in TF2.x
. This is one of the highly expected feature request that is still open. Please check this GitHub issue as feature request. So, we only need to import TF1.x
modules and use write_grads
as shown in the following code.
# Load the TensorBoard notebook extension
%load_ext tensorboard
import tensorflow as tf
import datetime
# Clear any logs from previous runs
!rm -rf ./logs/
# Disable V2 behavior
tf.compat.v1.disable_v2_behavior()
mnist = tf.keras.datasets.mnist
(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0
def create_model():
return tf.keras.models.Sequential([
tf.keras.layers.Flatten(input_shape=(28, 28)),
tf.keras.layers.Dense(512, activation='relu'),
tf.keras.layers.Dropout(0.2),
tf.keras.layers.Dense(10, activation='softmax')
])
model = create_model()
model.compile(optimizer='adam',
loss='sparse_categorical_crossentropy',
metrics=['accuracy'])
log_dir = "logs/fit/" + datetime.datetime.now().strftime("%Y%m%d-%H%M%S")
tensorboard_callback = tf.compat.v1.keras.callbacks.TensorBoard(log_dir=log_dir, histogram_freq=1, write_grads =True)
model.fit(x=x_train, y=y_train, epochs=1, validation_data=(x_test, y_test), callbacks=[tensorboard_callback])
%tensorboard --logdir logs/fit
Output:
Downloading data from https://storage.googleapis.com/tensorflow/tf-keras-datasets/mnist.npz
11493376/11490434 [==============================] - 0s 0us/step
Train on 60000 samples, validate on 10000 samples
WARNING:tensorflow:From /usr/local/lib/python3.6/dist-packages/tensorflow/python/keras/engine/training_v1.py:2048: Model.state_updates (from tensorflow.python.keras.engine.training) is deprecated and will be removed in a future version.
Instructions for updating:
This property should not be used in TensorFlow 2.0, as updates are applied automatically.
32/60000 [..............................] - ETA: 0s - loss: 2.3311 - acc: 0.0312WARNING:tensorflow:Callbacks method `on_train_batch_end` is slow compared to the batch time (batch time: 0.0055s vs `on_train_batch_end` time: 0.0235s). Check your callbacks.
60000/60000 [==============================] - 17s 288us/sample - loss: 0.2187 - acc: 0.9349 - val_loss: 0.1012 - val_acc: 0.9690
<tensorflow.python.keras.callbacks.History at 0x7f7ebd1d3d30>
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With