While working on a SO Question i came across a warning error using with loc
, precise details are as belows:
DataFrame Samples:
First dataFrame df1 :
>>> data1 = {'Sample': ['Sample_A','Sample_D', 'Sample_E'],
... 'Location': ['Bangladesh', 'Myanmar', 'Thailand'],
... 'Year':[2012, 2014, 2015]}
>>> df1 = pd.DataFrame(data1)
>>> df1.set_index('Sample')
Location Year
Sample
Sample_A Bangladesh 2012
Sample_D Myanmar 2014
Sample_E Thailand 2015
Second dataframe df2:
>>> data2 = {'Num': ['Value_1','Value_2','Value_3','Value_4','Value_5'],
... 'Sample_A': [0,1,0,0,1],
... 'Sample_B':[0,0,1,0,0],
... 'Sample_C':[1,0,0,0,1],
... 'Sample_D':[0,0,1,1,0]}
>>> df2 = pd.DataFrame(data2)
>>> df2.set_index('Num')
Sample_A Sample_B Sample_C Sample_D
Num
Value_1 0 0 1 0
Value_2 1 0 0 0
Value_3 0 1 0 1
Value_4 0 0 0 1
Value_5 1 0 1 0
>>> samples
['Sample_A', 'Sample_D', 'Sample_E']
While i'm taking samples
to preserve the column from it as follows it works but at the same time it produce warning ..
>>> df3 = df2.loc[:, samples]
>>> df3
Sample_A Sample_D Sample_E
0 0 0 NaN
1 1 0 NaN
2 0 1 NaN
3 0 1 NaN
4 1 0 NaN
Warnings:
indexing.py:1472: FutureWarning:
Passing list-likes to .loc or [] with any missing label will raise
KeyError in the future, you can use .reindex() as an alternative.
See the documentation here:
https://pandas.pydata.org/pandas-docs/stable/indexing.html#deprecate-loc-reindex-listlike
return self._getitem_tuple(key)
Would like to know about to handle this to a better way!
Use reindex
like:
df3 = df2.reindex(columns=samples)
print (df3)
Sample_A Sample_D Sample_E
0 0 0 NaN
1 1 0 NaN
2 0 1 NaN
3 0 1 NaN
4 1 0 NaN
Or if want only intersected columns use Index.intersection
:
df3 = df2[df2.columns.intersection(samples)]
#alternative
#df3 = df2[np.intersect1d(df2.columns, samples)]
print (df3)
Sample_A Sample_D
0 0 0
1 1 0
2 0 1
3 0 1
4 1 0
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With