I want to build an sklearn VotingClassifier
ensemble out of multiple different models (Decision Tree, SVC, and a Keras Network). All of them need a different kind of data preprocessing, which is why I made a pipeline for each of them.
# Define pipelines
# DTC pipeline
featuriser = Featuriser()
dtc = DecisionTreeClassifier()
dtc_pipe = Pipeline([('featuriser',featuriser),('dtc',dtc)])
# SVC pipeline
scaler = TimeSeriesScalerMeanVariance(kind='constant')
flattener = Flattener()
svc = SVC(C = 100, gamma = 0.001, kernel='rbf')
svc_pipe = Pipeline([('scaler', scaler),('flattener', flattener), ('svc', svc)])
# Keras pipeline
cnn = KerasClassifier(build_fn=get_model())
cnn_pipe = Pipeline([('scaler',scaler),('cnn',cnn)])
# Make an ensemble
ensemble = VotingClassifier(estimators=[('dtc', dtc_pipe),
('svc', svc_pipe),
('cnn', cnn_pipe)],
voting='hard')
The Featuriser
,TimeSeriesScalerMeanVariance
and Flattener
classes are some custom made transformers that all employ fit
,transform
and fit_transform
methods.
When I try to ensemble.fit(X, y)
fit the whole ensemble I get the error message:
ValueError: The estimator list should be a classifier.
Which I can understand, as the individual estimators are not specifically classifiers but pipelines. Is there a way to still make it work?
The problem is with the KerasClassifier
. It does not provide the _estimator_type
, which was checked in _validate_estimator
.
It is not the problem of using pipeline. Pipeline provides this information as a property. See here.
Hence, the quick fix is setting _estimator_type='classifier'
.
A reproducible example:
# Define pipelines
from sklearn.pipeline import Pipeline
from sklearn.tree import DecisionTreeClassifier
from sklearn.svm import SVC
from sklearn.preprocessing import MinMaxScaler, Normalizer
from sklearn.ensemble import VotingClassifier
from keras.wrappers.scikit_learn import KerasClassifier
from sklearn.datasets import make_classification
from keras.layers import Dense
from keras.models import Sequential
X, y = make_classification()
# DTC pipeline
featuriser = MinMaxScaler()
dtc = DecisionTreeClassifier()
dtc_pipe = Pipeline([('featuriser', featuriser), ('dtc', dtc)])
# SVC pipeline
scaler = Normalizer()
svc = SVC(C=100, gamma=0.001, kernel='rbf')
svc_pipe = Pipeline(
[('scaler', scaler), ('svc', svc)])
# Keras pipeline
def get_model():
# create model
model = Sequential()
model.add(Dense(10, input_dim=20, activation='relu'))
model.add(Dense(1, activation='sigmoid'))
# Compile model
model.compile(loss='binary_crossentropy', optimizer='adam', metrics=['accuracy'])
return model
cnn = KerasClassifier(build_fn=get_model)
cnn._estimator_type = "classifier"
cnn_pipe = Pipeline([('scaler', scaler), ('cnn', cnn)])
# Make an ensemble
ensemble = VotingClassifier(estimators=[('dtc', dtc_pipe),
('svc', svc_pipe),
('cnn', cnn_pipe)],
voting='hard')
ensemble.fit(X, y)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With