I'm a noob in using sciki-learn so please bear with me.
I was going through the example: http://scikit-learn.org/stable/modules/tree.html#tree
>>> from sklearn.datasets import load_iris
>>> from sklearn import tree
>>> iris = load_iris()
>>> clf = tree.DecisionTreeClassifier()
>>> clf = clf.fit(iris.data, iris.target)
>>> from StringIO import StringIO
>>> out = StringIO()
>>> out = tree.export_graphviz(clf, out_file=out)
Apparently the graphiz file is ready for use.
But how do I draw the tree using the graphiz file? (the example did not go into details as to how the tree is drawn).
Example code and tips are more than welcomed!
Thanks!
Update
I'm using ubuntu 12.04, Python 2.7.3
Which OS do you run? Do you have graphviz
installed?
In your example, StringIO()
object, holds graphviz data, here is one way to check the data:
...
>>> print out.getvalue()
digraph Tree {
0 [label="X[2] <= 2.4500\nerror = 0.666667\nsamples = 150\nvalue = [ 50. 50. 50.]", shape="box"] ;
1 [label="error = 0.0000\nsamples = 50\nvalue = [ 50. 0. 0.]", shape="box"] ;
0 -> 1 ;
2 [label="X[3] <= 1.7500\nerror = 0.5\nsamples = 100\nvalue = [ 0. 50. 50.]", shape="box"] ;
0 -> 2 ;
3 [label="X[2] <= 4.9500\nerror = 0.168038\nsamples = 54\nvalue = [ 0. 49. 5.]", shape="box"] ;
2 -> 3 ;
4 [label="X[3] <= 1.6500\nerror = 0.0407986\nsamples = 48\nvalue = [ 0. 47. 1.]", shape="box"] ;
3 -> 4 ;
5 [label="error = 0.0000\nsamples = 47\nvalue = [ 0. 47. 0.]", shape="box"] ;
4 -> 5 ;
6 [label="error = 0.0000\nsamples = 1\nvalue = [ 0. 0. 1.]", shape="box"] ;
4 -> 6 ;
7 [label="X[3] <= 1.5500\nerror = 0.444444\nsamples = 6\nvalue = [ 0. 2. 4.]", shape="box"] ;
3 -> 7 ;
8 [label="error = 0.0000\nsamples = 3\nvalue = [ 0. 0. 3.]", shape="box"] ;
7 -> 8 ;
9 [label="X[0] <= 6.9500\nerror = 0.444444\nsamples = 3\nvalue = [ 0. 2. 1.]", shape="box"] ;
7 -> 9 ;
10 [label="error = 0.0000\nsamples = 2\nvalue = [ 0. 2. 0.]", shape="box"] ;
9 -> 10 ;
11 [label="error = 0.0000\nsamples = 1\nvalue = [ 0. 0. 1.]", shape="box"] ;
9 -> 11 ;
12 [label="X[2] <= 4.8500\nerror = 0.0425331\nsamples = 46\nvalue = [ 0. 1. 45.]", shape="box"] ;
2 -> 12 ;
13 [label="X[0] <= 5.9500\nerror = 0.444444\nsamples = 3\nvalue = [ 0. 1. 2.]", shape="box"] ;
12 -> 13 ;
14 [label="error = 0.0000\nsamples = 1\nvalue = [ 0. 1. 0.]", shape="box"] ;
13 -> 14 ;
15 [label="error = 0.0000\nsamples = 2\nvalue = [ 0. 0. 2.]", shape="box"] ;
13 -> 15 ;
16 [label="error = 0.0000\nsamples = 43\nvalue = [ 0. 0. 43.]", shape="box"] ;
12 -> 16 ;
}
you can write it as .dot file and produce image output, as showed in source you linked:
$ dot -Tpng tree.dot -o tree.png
(PNG format output)
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With