We have a very large table (> 77M records and growing) runing on SQL Server 2005 64bit Standard edition and we are seeing some performance issues. There are up to a hundred thousand records added daily.
Does anyone know if there is a limit to the number of records SQL server Standard edition can handle? Should be be considering moving to Enterprise edition or are there some tricks we can use?
Additional info:
The table in question is pretty flat (14 columns), there is a clustered index with 6 fields, and two other indexes on single fields.
We added a fourth index using 3 fields that were in a select in one problem query and did not see any difference in the estimated performance (the query is part of a process that has to run in the off hours so we don't have metrics yet). These fields are part of the clustered index.
What is considered a large table in SQL Server?
Ditto other posters on how "large" depends what your data is, what kind of query you want to do, what your hardware is, and what your definition of a reason search time is. But here's one way to define "large": a "large" table is one that exceeds the amount of real memory the host can allocate to SQL Server.
Is there a limit on SQL table size?
You are using a MyISAM table and the space required for the table exceeds what is permitted by the internal pointer size. MyISAM permits data and index files to grow up to 256TB by default, but this limit can be changed up to the maximum permissible size of 65,536TB (2567 − 1 bytes).
How can I speed up my large table queries?
Use temp tables Speed up query execution in your SQL server by taking any data needed out of the large table, transferring it to a temp table and join with that. This reduces the power required in processing.
Agreeing with Marc and Unkown above ... 6 indexes in the clustered index is way too many, especially on a table that has only 14 columns. You shouldn't have more than 3 or 4, if that, I would say 1 or maybe 2. You may know that the clustered index is the actual table on the disk so when a record is inserted, the database engine must sort it and place it in it's sorted organized place on the disk. Non clustered indexes are not, they are supporting lookup 'tables'. My VLDBs are laid out on the disk (CLUSTERED INDEX) according to the 1st point below.
- Reduce your clustered index to 1 or 2. The best field choices are the IDENTITY (INT), if you have one, or a date field in which the fields are being added to the database, or some other field that is a natural sort of how your data is being added to the database. The point is you are trying to keep that data at the bottom of the table ... or have it laid out on the disk in the best (90%+) way that you'll read the records out. This makes it so that there is no reorganzing going on or that it's taking one and only one hit to get the data in the right place for the best read. Be sure to put the removed fields into non-clustered indexes so you don't lose the lookup efficacy. I have NEVER put more than 4 fields on my VLDBs. If you have fields that are being update frequently and they are included in your clustered index, OUCH, that's going to reorganize the record on the disk and cause COSTLY fragmentation.
- Check the fillfactor on your indexes. The larger the fill factor number (100) the more full the data pages and index pages will be. In relation to how many records you have and how many records your are inserting you will change the fillfactor # (+ or -) of your non-clustered indexes to allow for the fill space when a record is inserted. If you change your clustered index to a sequential data field, then this won't matter as much on a clustered index. Rule of thumb (IMO), 60-70 fillfactor for high writes, 70-90 for medium writes, and 90-100 for high reads/low writes. By dropping your fillfactor to 70, will mean that for every 100 records on a page, 70 records are written, which will leave free space of 30 records for new or reorganized records. Eats up more space, but it sure beats having to DEFRAG every night (see 4 below)
- Make sure the statistics exist on the table. If you want to sweep the database to create statistics using the "sp_createstats 'indexonly'", then SQL Server will create all the statistics on all the indexes that the engine has accumulated as requiring statistics. Don't leave off the 'indexonly' attribute though or you'll add statistics for every field, that would then not be good.
- Check the table/indexes using DBCC SHOWCONTIG to see which indexes are getting fragmented the most. I won't go into the details here, just know that you need to do it. Then based on that information, change the fillfactor up or down in relation to the changes the indexes are experiencing change and how fast (over time).
- Setup a job schedule that will do online (DBCC INDEXDEFRAG) or offline (DBCC DBREINDEX) on individual indexes to defrag them. Warning: don't do DBCC DBREINDEX on this large of a table without it being during maintenance time cause it will bring the apps down ... especially on the CLUSTERED INDEX. You've been warned. Test and test this part.
- Use the execution plans to see what SCANS, and FAT PIPES exist and adjust the indexes, then defrag and rewrite stored procs to get rid of those hot spots. If you see a RED object in your execution plan, it's because there are not statistics on that field. That's bad. This step is more of the "art than the science".
- On off peak times, run the UPDATE STATISTICS WITH FULLSCAN to give the query engine as much information about the data distributions as you can. Otherwise do the standard UPDATE STATISTICS (with standard 10% scan) on tables during the weeknights or more often as you see fit with your observerations to make sure the engine has more information about the data distributions to retrieve the data for efficiently.
Sorry this is so long, but it's extremely important. I've only give you here minimal information but will help a ton. There's some gut feelings and observations that go in to strategies used by these points that will require your time and testing.
No need to go to Enterprise edition. I did though in order to get the features spoken of earlier with partitioning. But I did ESPECIALLY to have much better mult-threading capabilities with searching and online DEFRAGING and maintenance ... In Enterprise edition, it is much much better and more friendly with VLDBs. Standard edition doesn't handle doing DBCC INDEXDEFRAG with online databases as well.