I'm adapting a web analysis tool to use Vertica
as the DB. I'm having real problems optimizing joins
. I tried creating pre-join projections for some of my queries, and while it did make the queries blazing fast, it slowed data loading into the fact table to a crawl.
A simple INSERT INTO ... SELECT * FROM
which we use to load data into the fact table from a staging table goes from taking ~5 seconds to taking 20+ minutes.
Because of this I dropped all pre-join projections and tried using the Database Designer to design query specific projections but it's not enough. Even with those projections a simple join is taking ~14 seconds, something that takes ~1 second with a pre-join projection.
My question is this: Is it normal for a pre-join projection to slow data insertion this much and if not, what could be the culprit? If it is normal, then it's a show stopper for us and are there other techniques we could use to speed up the joins?
We're running Vertica on a 5 node cluster, each node having 2 x quad core CPU and 32 GB of memory. The tables in my example query have 188,843,085 and 25,712,878 rows respectively.
The EXPLAIN output looks like this:
EXPLAIN SELECT referer_via_.url as referralPageUrl, COUNT(DISTINCT sessio
n.id) as visits FROM owa_session as session JOIN owa_referer AS referer_vi
a_ ON session.referer_id = referer_via_.id WHERE session.yyyymmdd BETWEEN
'20121123' AND '20121123' AND session.site_id = '49' GROUP BY referer_via_
.url ORDER BY visits DESC LIMIT 250;
Access Path:
+-SELECT LIMIT 250 [Cost: 1M, Rows: 250 (STALE STATISTICS)] (PATH ID: 0)
| Output Only: 250 tuples
| Execute on: Query Initiator
| +---> SORT [Cost: 1M, Rows: 1 (STALE STATISTICS)] (PATH ID: 1)
| | Order: count(DISTINCT "session".id) DESC
| | Output Only: 250 tuples
| | Execute on: All Nodes
| | +---> GROUPBY PIPELINED (RESEGMENT GROUPS) [Cost: 1M, Rows: 1 (STALE
STATISTICS)] (PATH ID: 2)
| | | Aggregates: count(DISTINCT "session".id)
| | | Group By: referer_via_.url
| | | Execute on: All Nodes
| | | +---> GROUPBY HASH (SORT OUTPUT) (RESEGMENT GROUPS) [Cost: 1M, Rows
: 1 (STALE STATISTICS)] (PATH ID: 3)
| | | | Group By: referer_via_.url, "session".id
| | | | Execute on: All Nodes
| | | | +---> JOIN HASH [Cost: 1M, Rows: 1 (STALE STATISTICS)] (PATH ID:
4) Outer (RESEGMENT)
| | | | | Join Cond: ("session".referer_id = referer_via_.id)
| | | | | Execute on: All Nodes
| | | | | +-- Outer -> STORAGE ACCESS for session [Cost: 463, Rows: 1 (ST
ALE STATISTICS)] (PUSHED GROUPING) (PATH ID: 5)
| | | | | | Projection: public.owa_session_projection
| | | | | | Materialize: "session".id, "session".referer_id
| | | | | | Filter: ("session".site_id = '49')
| | | | | | Filter: (("session".yyyymmdd >= 20121123) AND ("session"
.yyyymmdd <= 20121123))
| | | | | | Execute on: All Nodes
| | | | | +-- Inner -> STORAGE ACCESS for referer_via_ [Cost: 293K, Rows:
26M] (PATH ID: 6)
| | | | | | Projection: public.owa_referer_DBD_1_seg_Potency_2012112
2_Potency_20121122
| | | | | | Materialize: referer_via_.id, referer_via_.url
| | | | | | Execute on: All Nodes
An INNER JOIN is such type of join that returns all rows from both the participating tables where the key record of one table is equal to the key records of another table. This type of join required a comparison operator to match rows from the participating tables based on a common field or column of both the tables.
The syntax for the SQL FULL OUTER JOIN is: SELECT columns FROM table1 FULL [OUTER] JOIN table2 ON table1. column = table2.
The most common type of join is: SQL INNER JOIN (simple join). An SQL INNER JOIN returns all rows from multiple tables where the join condition is met.
Note: The INNER JOIN keyword selects all rows from both tables as long as there is a match between the columns. If there are records in the "Orders" table that do not have matches in "Customers", these orders will not be shown!
To speedup join:
Design session table as being partitioned on column "yyyymmdd". This will enable partition pruning
Add condition on column "yyyymmdd" to _referer_via_ and partition on it, if it is possible (most likely not)
have column site_id as possible close to the beginning of order by list in used (super)projection of session
And having more nodes in cluster do help.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With