I noticed that scipy.special
Bessel functions of order n and argument x jv(n,x)
are vectorized in x:
In [14]: import scipy.special as sp
In [16]: sp.jv(1, range(3)) # n=1, [x=0,1,2]
Out[16]: array([ 0., 0.44005059, 0.57672481])
But there's no corresponding vectorized form of the spherical Bessel functions, sp.sph_jn
:
In [19]: sp.sph_jn(1,range(3))
---------------------------------------------------------------------------
ValueError Traceback (most recent call last)
<ipython-input-19-ea59d2f45497> in <module>()
----> 1 sp.sph_jn(1,range(3)) #n=1, 3 value array
/home/glue/anaconda/envs/fibersim/lib/python2.7/site-packages/scipy/special/basic.pyc in sph_jn(n, z)
262 """
263 if not (isscalar(n) and isscalar(z)):
--> 264 raise ValueError("arguments must be scalars.")
265 if (n != floor(n)) or (n < 0):
266 raise ValueError("n must be a non-negative integer.")
ValueError: arguments must be scalars.
Furthermore, the spherical Bessel function compute all orders of N in one pass. So if I wanted the n=5
Bessel function for argument x=10
, it returns n=1,2,3,4,5. It actually returns jn and its derivative in one pass:
In [21]: sp.sph_jn(5,10)
Out[21]:
(array([-0.05440211, 0.07846694, 0.07794219, -0.03949584, -0.10558929,
-0.05553451]),
array([-0.07846694, -0.0700955 , 0.05508428, 0.09374053, 0.0132988 ,
-0.07226858]))
Why does this asymmetry exist in the API, and does anyone know of a library that will return spherical Bessel functions vectorized, or at least more quickly (ie in cython)?
You can write a cython function to speedup the calculation, the first thing you must to do is to get the address of the fortran function SPHJ
, here is how to do this in Python:
from scipy import special as sp
sphj = sp.specfun.sphj
import ctypes
addr = ctypes.pythonapi.PyCObject_AsVoidPtr(ctypes.py_object(sphj._cpointer))
Then you can call the fortran function directly in Cython, note I use prange()
to use multicore to speedup the calculation:
%%cython -c-Ofast -c-fopenmp --link-args=-fopenmp
from cpython.mem cimport PyMem_Malloc, PyMem_Free
from cython.parallel import prange
import numpy as np
import cython
from cpython cimport PyCObject_AsVoidPtr
from scipy import special
ctypedef void (*sphj_ptr) (const int *n, const double *x,
const int *nm, const double *sj, const double *dj) nogil
cdef sphj_ptr _sphj=<sphj_ptr>PyCObject_AsVoidPtr(special.specfun.sphj._cpointer)
@cython.wraparound(False)
@cython.boundscheck(False)
def cython_sphj2(int n, double[::1] x):
cdef int count = x.shape[0]
cdef double * sj = <double *>PyMem_Malloc(count * sizeof(double) * (n + 1))
cdef double * dj = <double *>PyMem_Malloc(count * sizeof(double) * (n + 1))
cdef int * mn = <int *>PyMem_Malloc(count * sizeof(int))
cdef double[::1] res = np.empty(count)
cdef int i
if count < 100:
for i in range(x.shape[0]):
_sphj(&n, &x[i], mn + i, sj + i*(n+1), dj + i*(n+1))
res[i] = sj[i*(n+1) + n] #choose the element you want here
else:
for i in prange(count, nogil=True):
_sphj(&n, &x[i], mn + i, sj + i*(n+1), dj + i*(n+1))
res[i] = sj[i*(n+1) + n] #choose the element you want here
PyMem_Free(sj)
PyMem_Free(dj)
PyMem_Free(mn)
return res.base
To compare, here is the Python function that call sphj()
in a forloop:
import numpy as np
def python_sphj(n, x):
sphj = special.specfun.sphj
res = np.array([sphj(n, v)[1][n] for v in x])
return res
Here is the %timit results for 10 elements:
x = np.linspace(1, 2, 10)
r1 = cython_sphj2(4, x)
r2 = python_sphj(4, x)
assert np.allclose(r1, r2)
%timeit cython_sphj2(4, x)
%timeit python_sphj(4, x)
the result:
10000 loops, best of 3: 21.5 µs per loop
10000 loops, best of 3: 28.1 µs per loop
Here is the results for 100000 elements:
x = np.linspace(1, 2, 100000)
r1 = cython_sphj2(4, x)
r2 = python_sphj(4, x)
assert np.allclose(r1, r2)
%timeit cython_sphj2(4, x)
%timeit python_sphj(4, x)
the result:
10 loops, best of 3: 44.7 ms per loop
1 loops, best of 3: 231 ms per loop
In case anyone is still interested, I found one solution nearly 17x faster than the one by Ted Pudlik. I used the fact that a spherical Bessel function of order n is essentially 1/sqrt(x) times a standard Bessel function of order n+1/2, which is already vectorized:
import numpy as np
from scipy import special
sphj_bessel = lambda n, z: special.jv(n+1/2,z)*np.sqrt(np.pi/2)/(np.sqrt(z))
I got the following timings:
%timeit sphj_vectorize(2, x) # x = np.linspace(1, 2, 10**5)
1 loops, best of 3: 759 ms per loop
%timeit sphj_bessel(2,x) # x = np.linspace(1, 2, 10**5)
10 loops, best of 3: 44.6 ms per loop
There's a pull request incorporating vectorized spherical Bessel function routines into SciPy as scipy.special.spherical_x
, with x = jn, yn, in, kn
. With a little luck, they should make it into version 0.18.0.
The performance improvement over np.vectorize
(i.e., a for-loop) depends on the function, but can be orders of magnitude.
import numpy as np
from scipy import special
@np.vectorize
def sphj_vectorize(n, z):
return special.sph_jn(n, z)[0][-1]
x = np.linspace(1, 2, 10**5)
%timeit sphj_vectorize(4, x)
1 loops, best of 3: 1.47 s per loop
%timeit special.spherical_jn(4, x)
100 loops, best of 3: 8.07 ms per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With