Assume that I have two arrays A
and B
, where both A
and B
are m x n
. My goal is now, for each row of A
and B
, to find where I should insert the elements of row i
of A
in the corresponding row of B
. That is, I wish to apply np.digitize
or np.searchsorted
to each row of A
and B
.
My naive solution is to simply iterate over the rows. However, this is far too slow for my application. My question is therefore: is there a vectorized implementation of either algorithm that I haven't managed to find?
We can add each row some offset as compared to the previous row. We would use the same offset for both arrays. The idea is to use np.searchsorted
on flattened version of input arrays thereafter and thus each row from b
would be restricted to find sorted positions in the corresponding row in a
. Additionally, to make it work for negative numbers too, we just need to offset for the minimum numbers as well.
So, we would have a vectorized implementation like so -
def searchsorted2d(a,b):
m,n = a.shape
max_num = np.maximum(a.max() - a.min(), b.max() - b.min()) + 1
r = max_num*np.arange(a.shape[0])[:,None]
p = np.searchsorted( (a+r).ravel(), (b+r).ravel() ).reshape(m,-1)
return p - n*(np.arange(m)[:,None])
Runtime test -
In [173]: def searchsorted2d_loopy(a,b):
...: out = np.zeros(a.shape,dtype=int)
...: for i in range(len(a)):
...: out[i] = np.searchsorted(a[i],b[i])
...: return out
...:
In [174]: # Setup input arrays
...: a = np.random.randint(11,99,(10000,20))
...: b = np.random.randint(11,99,(10000,20))
...: a = np.sort(a,1)
...: b = np.sort(b,1)
...:
In [175]: np.allclose(searchsorted2d(a,b),searchsorted2d_loopy(a,b))
Out[175]: True
In [176]: %timeit searchsorted2d_loopy(a,b)
10 loops, best of 3: 28.6 ms per loop
In [177]: %timeit searchsorted2d(a,b)
100 loops, best of 3: 13.7 ms per loop
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With