I am receiving the error: ValueError: Wrong number of items passed 3, placement implies 1
, and I am struggling to figure out where, and how I may begin addressing the problem.
I don't really understand the meaning of the error; which is making it difficult for me to troubleshoot. I have also included the block of code that is triggering the error in my Jupyter Notebook.
The data is tough to attach; so I am not looking for anyone to try and re-create this error for me. I am just looking for some feedback on how I could address this error.
KeyError Traceback (most recent call last) C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\indexes\base.py in get_loc(self, key, method, tolerance) 1944 try: -> 1945 return self._engine.get_loc(key) 1946 except KeyError: pandas\index.pyx in pandas.index.IndexEngine.get_loc (pandas\index.c:4154)() pandas\index.pyx in pandas.index.IndexEngine.get_loc (pandas\index.c:4018)() pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:12368)() pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:12322)() KeyError: 'predictedY' During handling of the above exception, another exception occurred: KeyError Traceback (most recent call last) C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\internals.py in set(self, item, value, check) 3414 try: -> 3415 loc = self.items.get_loc(item) 3416 except KeyError: C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\indexes\base.py in get_loc(self, key, method, tolerance) 1946 except KeyError: -> 1947 return self._engine.get_loc(self._maybe_cast_indexer(key)) 1948 pandas\index.pyx in pandas.index.IndexEngine.get_loc (pandas\index.c:4154)() pandas\index.pyx in pandas.index.IndexEngine.get_loc (pandas\index.c:4018)() pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:12368)() pandas\hashtable.pyx in pandas.hashtable.PyObjectHashTable.get_item (pandas\hashtable.c:12322)() KeyError: 'predictedY' During handling of the above exception, another exception occurred: ValueError Traceback (most recent call last) <ipython-input-95-476dc59cd7fa> in <module>() 26 return gp, results 27 ---> 28 gp_dailyElectricity, results_dailyElectricity = predictAll(3, 0.04, trainX_dailyElectricity, trainY_dailyElectricity, testX_dailyElectricity, testY_dailyElectricity, testSet_dailyElectricity, 'Daily Electricity') <ipython-input-95-476dc59cd7fa> in predictAll(theta, nugget, trainX, trainY, testX, testY, testSet, title) 8 9 results = testSet.copy() ---> 10 results['predictedY'] = predictedY 11 results['sigma'] = sigma 12 C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\frame.py in __setitem__(self, key, value) 2355 else: 2356 # set column -> 2357 self._set_item(key, value) 2358 2359 def _setitem_slice(self, key, value): C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\frame.py in _set_item(self, key, value) 2422 self._ensure_valid_index(value) 2423 value = self._sanitize_column(key, value) -> 2424 NDFrame._set_item(self, key, value) 2425 2426 # check if we are modifying a copy C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\generic.py in _set_item(self, key, value) 1462 1463 def _set_item(self, key, value): -> 1464 self._data.set(key, value) 1465 self._clear_item_cache() 1466 C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\internals.py in set(self, item, value, check) 3416 except KeyError: 3417 # This item wasn't present, just insert at end -> 3418 self.insert(len(self.items), item, value) 3419 return 3420 C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\internals.py in insert(self, loc, item, value, allow_duplicates) 3517 3518 block = make_block(values=value, ndim=self.ndim, -> 3519 placement=slice(loc, loc + 1)) 3520 3521 for blkno, count in _fast_count_smallints(self._blknos[loc:]): C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\internals.py in make_block(values, placement, klass, ndim, dtype, fastpath) 2516 placement=placement, dtype=dtype) 2517 -> 2518 return klass(values, ndim=ndim, fastpath=fastpath, placement=placement) 2519 2520 # TODO: flexible with index=None and/or items=None C:\Users\brennn1\AppData\Local\Continuum\Anaconda3\lib\site-packages\pandas\core\internals.py in __init__(self, values, placement, ndim, fastpath) 88 raise ValueError('Wrong number of items passed %d, placement ' 89 'implies %d' % (len(self.values), ---> 90 len(self.mgr_locs))) 91 92 @property ValueError: Wrong number of items passed 3, placement implies 1
My code is as follows:
def predictAll(theta, nugget, trainX, trainY, testX, testY, testSet, title): gp = gaussian_process.GaussianProcess(theta0=theta, nugget =nugget) gp.fit(trainX, trainY) predictedY, MSE = gp.predict(testX, eval_MSE = True) sigma = np.sqrt(MSE) results = testSet.copy() results['predictedY'] = predictedY results['sigma'] = sigma print ("Train score R2:", gp.score(trainX, trainY)) print ("Test score R2:", sklearn.metrics.r2_score(testY, predictedY)) plt.figure(figsize = (9,8)) plt.scatter(testY, predictedY) plt.plot([min(testY), max(testY)], [min(testY), max(testY)], 'r') plt.xlim([min(testY), max(testY)]) plt.ylim([min(testY), max(testY)]) plt.title('Predicted vs. observed: ' + title) plt.xlabel('Observed') plt.ylabel('Predicted') plt.show() return gp, results gp_dailyElectricity, results_dailyElectricity = predictAll(3, 0.04, trainX_dailyElectricity, trainY_dailyElectricity, testX_dailyElectricity, testY_dailyElectricity, testSet_dailyElectricity, 'Daily Electricity')
In general, the error ValueError: Wrong number of items passed 3, placement implies 1
suggests that you are attempting to put too many pigeons in too few pigeonholes. In this case, the value on the right of the equation
results['predictedY'] = predictedY
is trying to put 3 "things" into a container that allows only one. Because the left side is a dataframe column, and can accept multiple items on that (column) dimension, you should see that there are too many items on another dimension.
Here, it appears you are using sklearn for modeling, which is where gaussian_process.GaussianProcess()
is coming from (I'm guessing, but correct me and revise the question if this is wrong).
Now, you generate predicted values for y here:
predictedY, MSE = gp.predict(testX, eval_MSE = True)
However, as we can see from the documentation for GaussianProcess, predict()
returns two items. The first is y, which is array-like (emphasis mine). That means that it can have more than one dimension, or, to be concrete for thick headed people like me, it can have more than one column -- see that it can return (n_samples, n_targets)
which, depending on testX
, could be (1000, 3)
(just to pick numbers). Thus, your predictedY
might have 3 columns.
If so, when you try to put something with three "columns" into a single dataframe column, you are passing 3 items where only 1 would fit.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With