I recieve this error while trying to obtain the recall score.
X_test = test_pos_vec + test_neg_vec Y_test = ["pos"] * len(test_pos_vec) + ["neg"] * len(test_neg_vec) recall_average = recall_score(Y_test, y_predict, average="binary") print(recall_average)
This will give me:
C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:1030: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison if pos_label not in present_labels: Traceback (most recent call last): File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module> main() File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False) File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model recall_average = recall_score(Y_test, y_predict, average="binary") File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score sample_weight=sample_weight) File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1036, in precision_recall_fscore_support (pos_label, present_labels)) ValueError: pos_label=1 is not a valid label: array(['neg', 'pos'], dtype='<U3')
I tried to transform 'pos' in 1 and 'neg' in 0 this way:
for i in range(len(Y_test)): if 'neg' in Y_test[i]: Y_test[i] = 0 else: Y_test[i] = 1
But this is giving me another error:
C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py:181: FutureWarning: elementwise comparison failed; returning scalar instead, but in the future will perform elementwise comparison score = y_true == y_pred Traceback (most recent call last): File "G:/PyCharmProjects/NB/accuracy/script.py", line 812, in <module> main() File "G:/PyCharmProjects/NB/accuracy/script.py", line 91, in main evaluate_model(model, train_pos_vec, train_neg_vec, test_pos_vec, test_neg_vec, False) File "G:/PyCharmProjects/NB/accuracy/script.py", line 648, in evaluate_model recall_average = recall_score(Y_test, y_predict, average="binary") File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1359, in recall_score sample_weight=sample_weight) File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\metrics\classification.py", line 1026, in precision_recall_fscore_support present_labels = unique_labels(y_true, y_pred) File "C:\Users\anca_elena.moisa\AppData\Local\Programs\Python\Python36\lib\site-packages\sklearn\utils\multiclass.py", line 103, in unique_labels raise ValueError("Mix of label input types (string and number)") ValueError: Mix of label input types (string and number)
What I am trying to do is to obtain the metrics: accuracy, precision, recall, f_measure. With average='weighted'
, I obtain the same result: accuracy=recall. I guess this is not correct, so I changed the average='binary'
, but I have those errors. Any ideas?
recall_average = recall_score(Y_test, y_predict, average="binary", pos_label="neg")
Use "neg"
or "pos"
as pos_label
and this error won't raise again.
If you love us? You can donate to us via Paypal or buy me a coffee so we can maintain and grow! Thank you!
Donate Us With